, Volume 807, Issue 1, pp 87–97 | Cite as

eDNA-based crayfish plague monitoring is superior to conventional trap-based assessments in year-round detection probability

  • Claudia WittwerEmail author
  • Stefan Stoll
  • David Strand
  • Trude Vrålstad
  • Carsten Nowak
  • Marco Thines
Primary Research Paper


The crayfish plague disease agent Aphanomyces astaci is a major threat to European crayfish populations, leading to mass extinctions when spores are transmitted into habitats of native species by infected invasive crayfish species. Current methods for detecting crayfish plague in carrier crayfish populations depend on time-consuming capture of individuals and screening via molecular methods. Highly sensitive environmental DNA (eDNA) methods are a promising tool for rapid and cost-efficient monitoring of pathogens in freshwater systems directly in water samples. For evaluating the usefulness of eDNA for A. astaci detection, the trap-based crayfish plague monitoring followed by qPCR screening of tissue samples was compared to an eDNA-based system to detect A. astaci- spores at a stream inhabited by an infected carrier crayfish population of Pacifastacus leniusculus. The presence of A. astaci was confirmed at all investigated sites with both sample types. Both methods showed comparable A. astaci prevalence, with the eDNA method being applicable across a longer annual time span, including winter, with greater reliability than the conventional method. Given the speed and reliability of the eDNA method for crayfish plague detection, this method might be the best choice for routine monitoring and evaluation of crayfish habitats to hinder the disease spread.


Aphanomyces astaci Environmental DNA Filtration Pacifastacus leniusculus Pathogen detection Seasonal variation 



We would like to acknowledge the upper fisheries administrations of the State of Hessen for financial and logistical support, namely Dr. Christian Köhler and Patrick Heinz (regional authority Darmstadt), Guntram Ohm-Winter and Marlene Höfner (regional authority Gießen) and Christoph Laczny (regional authority Kassel). We are also thankful to Dr. Anne Schrimpf who provided technical support that greatly assisted the research in the initial stages. We thank Berardino Cocchiararo for his valuable assistance in qPCR data analysis and his helpful advices in laboratory practice during this project. We would like to thank Philippa Breyer, Silvia Mort-Farre and Julia Mann for their assistance in sampling and laboratory work and are thankful to Rainer Hennings for useful suggestions concerning crayfish trapping. We are also very grateful to the two unknown reviewers for their comments, which improved the manuscript.


This work was funded (Grant F7/2012) and fishing permits were granted by the State of Hessen, represented by the regional authorities Darmstadt, Gießen and Kassel. The contributions conducted by D. Strand and T. Vrålstad were funded by the Norwegian Research Council Project NRC-243907/TARGET.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

10750_2017_3408_MOESM1_ESM.pdf (155 kb)
Supplementary material 1 (PDF 155 kb)


  1. Abrahamsson, S. A. A., 1971. Density, growth and reproduction in populations of Astacus astacus and Pacifastacus leniusculus in an isolated pond. Oikos 22: 373–380.CrossRefGoogle Scholar
  2. Abrahamsson, S. A. A., 1981. Trappability, locomotion and diel pattern of activity of the crayfish Astacus astacus and Pacifastacus leniusculus Dana. Freshwater Crayfish 5: 239–253.Google Scholar
  3. Aiken, D. E. & S. L. Waddy, 1992. The growth process in crayfish. Reviews in Aquatic Science 6: 335–381.Google Scholar
  4. Alderman, D. J., 1996. Geographical spread of bacterial and fungal diseases of crustaceans. Revue scientifique et technique (OIE) 15: 603–632.CrossRefGoogle Scholar
  5. Alderman, D. J. & J. L. Polglase, 1986. Aphanomyces astaci: isolation and culture. Journal of Fish Diseases 9: 367–379.CrossRefGoogle Scholar
  6. Alderman, D. J. & J. L. Polglase, 1988. Pathogens, parasites and commensals. In Holdich, D. M. & R. S. Lowery (eds), Freshwater Crayfish. Biology, Management and Exploitation. Croom Helm, London: 167–212.Google Scholar
  7. Barnes, M. A. & C. R. Turner, 2016. The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics 17: 1–17.CrossRefGoogle Scholar
  8. Beakes, G. W., D. Honda & M. Thines, 2014. Systematics of the Straminipila: Labyrinthulomycota, Hyphochytriomycota, and Oomycota. In McLaughlin, D. & J. W. Spatafora (eds), The Mycota. Systematics and Evolution, Part B. Springer, Berlin: 39–97.CrossRefGoogle Scholar
  9. Diéguez-Uribeondo, J., T. S. Huang, L. Cerenius & K. Söderhäll, 1995. Physiological adaptation of an Aphanomyces astaci strain isolated from the freshwater crayfish Procambarus clarkii. Mycological Research 99: 574–578.CrossRefGoogle Scholar
  10. Diéguez-Uribeondo, J., L. Cerenius & I. Dyková, 2006. Pathogens, parasites and ectocommensals. In Souty-Grosset, C., D. M. Holdich, P. Y. Noël, J. D. Reynolds & P. Haffner (eds), Atlas of crayfish in Europe. Muséum National d’Histoire Naturelle, Paris: 131–148.Google Scholar
  11. Evans, L. H. & B. F. Edgerton, 2002. Pathogens, parasites and commensals. In Holdich, D. M. (ed.), Biology of Freshwater Crayfish. Blackwell Science Ltd, Oxford: 377–438.Google Scholar
  12. Flint, R. W., 1977. Seasonal activity, migration and distribution of the Crayfish, Pacifastacus Ieniusculus, in Lake Tahoe. The American Midland Naturalist 97: 280–292.CrossRefGoogle Scholar
  13. Gherardi, F., 2002. Behaviour. In Holdich, D. M. (ed.), Biology of Freshwater Crayfish. Blackwell Science Ltd, Oxford: 257–290.Google Scholar
  14. Goldberg, C. S., D. S. Pilliod, R. S. Arkle & L. P. Waits, 2011. Molecular detection of vertebrates in stream water: a demonstration using rocky mountain tailed Frogs and idaho giant salamanders. PLoS ONE 6: e22746.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Goldberg, C. S., C. R. Turner, K. Deiner, K. E. Klymus, P. F. Thomsen, M. A. Murphy, S. F. Spear, A. McKee, S. J. Oyler-McCance, R. S. Cornman, M. B. Laramie, A. R. Mahon, R. F. Lance, D. S. Pilliod, K. M. Strickler, L. P. Waits, A. K. Fremier, T. Takahara, J. E. Herder, P. Taberlet & M. Gilbert, 2016. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and Evolution 7: 1299–1307.CrossRefGoogle Scholar
  16. Guan, R. Z. & P. R. Wiles, 1999. Growth and reproduction of the introduced crayfish Pacifastacus leniusculus in a British lowland river. Fisheries Research 42: 245–259.CrossRefGoogle Scholar
  17. Holdich, D. M., J. D. Reynolds, C. Souty-Grosset, C. Souty-Grosset & P. J. Sibley, 2009. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowledge and management of aquatic ecosystems 394–395: 11.CrossRefGoogle Scholar
  18. Jerde, C. L., A. R. Mahon, W. L. Chadderton & D. M. Lodge, 2011. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters 4: 150–157.CrossRefGoogle Scholar
  19. Jussila, J., J. Makkonen, A. Vainikka, R. Kortet & H. Kokko, 2011. Latent crayfish plague (Aphanomyces astaci) infection in a robust wild noble crayfish (Astacus astacus) population. Aquaculture 321: 17–20.CrossRefGoogle Scholar
  20. Kozák, P., M. Buřič, J. Kanta, A. Kouba, P. Hamr & T. Policar, 2009. The effect of water temperature on the number of moults and growth of juvenile signal crayfish Pacifastacus leniusculus Dana. Czech Journal of Animal Science 54: 286–292.Google Scholar
  21. Kozubíková, E., L. Filipová, P. Kozák, Z. Ďuriš, M. P. Martín, J. Diéguez-Uribeondo, B. Oidtmann & A. Petrusek, 2009. Prevalence of the crayfish plague pathogen Aphanomyces astaci in invasive American crayfishes in the Czech Republic. Conservation Biology 23: 1204–1213.CrossRefPubMedGoogle Scholar
  22. Kusar, D., A. Vrezec, M. Ocepek & V. Jencic, 2013. Aphanomyces astaci in wild crayfish populations in Slovenia: first report of persistent infection in a stone crayfish Austropotamobius torrentium population. Diseases of Aquatic Organisms 103: 157–169.CrossRefPubMedGoogle Scholar
  23. Lowery, R. S., 1988. Growth, moulting and reproduction. In Holdich, D. M. & R. S. Lowery (eds), Freshwater Crayfish. Biology, Management and Exploitation. Croom Helm, London: 83–113.Google Scholar
  24. Lowery, R. S. & D. M. Holdich, 1988. Pacifastacus leniusculus in North America and Europe, with details of the distribution of introduced and native crayfish species in Europe. In Holdich, D. M. & R. S. Lowery (eds), Freshwater crayfish. Biology, management and exploitation. Croom Helm, London: 283–308.Google Scholar
  25. Makkonen, J., J. Jussila, R. Kortet, A. Vainikka & H. Kokko, 2012. Differing virulence of Aphanomyces astaci isolates and elevated resistance of noble crayfish Astacus astacus against crayfish plague. Diseases of Aquatic Organisms 102: 129–136.CrossRefPubMedGoogle Scholar
  26. Makkonen, J., D. A. Strand, H. Kokko, T. Vrålstad & J. Jussila, 2013. Timing and quantifying Aphanomyces astaci sporulation from the noble crayfish suffering from the crayfish plague. Veterinary Microbiology 162: 750–755.CrossRefPubMedGoogle Scholar
  27. Makkonen, J., H. Kokko, A. Vainikka, R. Kortet & J. Jussila, 2014. Dose-dependent mortality of the noble crayfish (Astacus astacus) to different strains of the crayfish plague (Aphanomyces astaci). Journal of Invertebrate Pathology 115: 86–91.CrossRefPubMedGoogle Scholar
  28. Mason, J. C., 1970. Copulatory behavior of the crayfish Pacifastacus trowbridgii (Stimpson). Canadian Journal of Fisheries and Aquatic Sciences 48: 969–976.Google Scholar
  29. Nyhlén, L. & T. Unestam, 1980. Wound reactions and Aphanomyces astaci growth in crayfish cuticle. Journal of Invertebrate Pathology 36: 187–197.CrossRefGoogle Scholar
  30. Nyland, V. & K. Westman, 1995. Frequency of visible symptoms of crayfish plague fungus Aphanomyces astaci on the signal crayfish Pacifastacus leniusculus in natural populations in Finland 1979-1988. Freshwater Crayfish 8: 577–588.Google Scholar
  31. Office international des e’pizooties (OIE), 2012. In Crayfish plague (Aphanomyces astaci), Chapter 2.2.1. Manual of Diagnostic Tests for Aquatic Animals. World Organization for Animal Health. Accessed 5 Feb 2017.
  32. Pârvulescu, L., A. Schrimpf, E. Kozubíková, S. Cabanillas Resino, T. Vrålstad, A. Petrusek & R. Schulz, 2012. Invasive crayfish and crayfish plague on the move: first detection of the plague agent Aphanomyces astaci in the Romanian Danube. Diseases of Aquatic Organisms 98: 85–94.CrossRefPubMedGoogle Scholar
  33. Reynolds, J. D. & M. A. Matthews, 1993. Experimental fishing of Austropotamobius pallipes (Lereboullet) stocks in an Irish midland lake. Freshwater Crayfish 9: 147–153.Google Scholar
  34. Smart, A. S., R. Tingley, A. R. Weeks, A. R. van Rooyen & M. A. McCarthy, 2015. Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecological Applications 25: 1944–1952.CrossRefPubMedGoogle Scholar
  35. Strand, D. A., J. Jussila, S. I. Johnsen, S. Viljamaa-Dirks, L. Edsman, J. Wiik-Nielsen, H. Viljugrein, F. Engdahl, T. Vrålstad & E. Morgan, 2014. Detection of crayfish plague spores in large freshwater systems. Journal of Applied Ecology 51: 544–553.CrossRefGoogle Scholar
  36. Strand, D. A., A. Holst-Jensen, H. Viljugrein, B. Edvardsen, D. Klaveness, J. Jussila & T. Vrålstad, 2011. Detection and quantification of the crayfish plague agent in natural waters: direct monitoring approach for aquatic environments. Diseases of Aquatic Organisms 95: 9–17.CrossRefPubMedGoogle Scholar
  37. Strand, D. A., J. Jussila, S. Viljamaa-Dirks, H. Kokko, J. Makkonen, A. Holst-Jensen, H. Viljugrein & T. Vrålstad, 2012. Monitoring the spore dynamics of Aphanomyces astaci in the ambient water of latent carrier crayfish. Veterinary Microbiology 160: 99–107.CrossRefPubMedGoogle Scholar
  38. Svoboda, J., E. Kozubikova-Balcarova, A. Kouba, M. Buric, P. Kozak, J. Diéguez-Uribeondo & A. Petrusek, 2013. Temporal dynamics of spore release of the crayfish plague pathogen from its natural host, American spiny-cheek crayfish (Orconectes limosus), evaluated by transmission experiments. Parasitology 140: 792–801.CrossRefPubMedGoogle Scholar
  39. Takahara, T., T. Minamoto, H. Yamanaka, H. Doi, Z. Kawabata & J. A. Gilbert, 2012. Estimation of fish biomass using environmental DNA. PLoS ONE 7: e35868.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Thomsen, P. F. & E. Willerslev, 2015. Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 183: 4–18.CrossRefGoogle Scholar
  41. Thomsen, P. F., J. Kielgast, L. L. Iversen, P. R. Moller, M. Rasmussen & E. Willerslev, 2012. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE 7: e41732.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tuffs, S. & B. Oidtmann, 2011. A comparative study of molecular diagnostic methods designed to detect the crayfish plague pathogen, Aphanomyces astaci. Veterinary Microbiology 153: 343–353.CrossRefPubMedGoogle Scholar
  43. Unestam, T., 1972. On the host range and origin of the crayfish plague fungus. Reports of the Institute of Freshwater Research, Drottningholm 52: 192–198.Google Scholar
  44. Unestam, T. & D. W. Weiss, 1970. The host-parasite relationship between freshwater crayfish and the crayfish disease fungus Aphanomyces astaci: responses to infection by a susceptible and a resistant species. Journal of General Microbiology 69: 77–90.CrossRefGoogle Scholar
  45. Viljamaa-Dirks, S., S. Heinikainen, M. Nieminen, P. Vennerstrom & S. Pelkonen, 2011. Persistent infection by crayfish plague Aphanomyces astaci in a noble crayfish population – a case report. Bulletin of the European Association of Fish Pathologists 31: 182–188.Google Scholar
  46. Viljamaa-Dirks, S., S. Heinikainen, H. Torssonen, M. Pursiainen, J. Mattila & S. Pelkonen, 2013. Distribution and epidemiology of genotypes of the crayfish plague agent Aphanomyces astaci from noble crayfish Astacus astacus in Finland. Diseases of Aquatic Organisms 103: 199–208.CrossRefPubMedGoogle Scholar
  47. Viljamaa-Dirks, S., S. Heinikainen, A. M. K. Virtala, H. Torssonen & S. Pelkonen, 2016. Variation in the hyphal growth rate and the virulence of two genotypes of the crayfish plague organism Aphanomyces astaci. Journal of Fish Diseases 39: 753–764.CrossRefPubMedGoogle Scholar
  48. Vrålstad, T., A. K. Knutsen, T. Tengs & A. Holst-Jensen, 2009. A quantitative TaqMan® MGB real-time polymerase chain reaction based assay for detection of the causative agent of crayfish plague Aphanomyces astaci. Veterinary Microbiology 137: 146–155.CrossRefPubMedGoogle Scholar
  49. Westman, K. & R. Savolainen, 2002. Growth of the signal crayfish, Pacifastacus leniusculus, in a small forest lake in Finland. Boreal Environment Research 7: 53–61.Google Scholar
  50. Woodlock, B. & J. D. Reynolds, 1988. Laboratory breeding studies of freshwater crayfish, Austropotamobius pallipes (Lereboullet). Freshwater Biology 19: 71–78.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
  2. 2.Faculty of Biological SciencesGoethe-University FrankfurtFrankfurt (Main)Germany
  3. 3.River and Floodplain Ecology GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
  4. 4.Department of Environmental Planning/Environmental TechnologyEnvironmental Campus BirkenfeldBirkenfeldGermany
  5. 5.Norwegian Institute for Water ResearchOsloNorway
  6. 6.Norwegian Veterinary InstituteOsloNorway
  7. 7.Senckenberg Biodiversity and Climate Research Centre (BiK-F)Frankfurt (Main)Germany

Personalised recommendations