Advertisement

Hydrobiologia

, Volume 807, Issue 1, pp 1–17 | Cite as

Exploring the effects of salinization on trophic diversity in freshwater ecosystems: a quantitative review

  • Anakena M. Castillo
  • Diana M. T. Sharpe
  • Cameron K. Ghalambor
  • Luis F. De León
Review Paper

Abstract

Salinization of freshwater ecosystems represents a potential threat to biodiversity, but the distribution of salinity tolerance among freshwater organisms and its functional consequences are understudied. In this study, we reviewed global patterns of salinity tolerance across a broad range of freshwater organisms. Specifically, we compared published data on LC50 (a metric of salinity tolerance) across climatic regions, taxa, and functional feeding groups (FFGs). We found that microinvertebrates were more sensitive to salinity than vertebrates and macroinvertebrates. Within aquatic insects, there was considerable variability in tolerance across FFGs. Specifically, scrapers, gatherers, and filterers were more sensitive on average than omnivores, shredders, and predators. Thus, we predict that increasing salinization can negatively impact trophic diversity and in turn cause overall changes in the structure and function of freshwater ecosystems. We also identified both historical exposure and taxonomic affinity as potential drivers of contemporary salinity tolerance across freshwater organisms. Finally, we found important gaps in our understanding of the potential impacts of salinization on freshwater biodiversity, particularly in regions expected to be affected by increased salinization due to climate change and secondary salinization. Understanding the differential vulnerability of freshwater taxa is critical to predicting the ecosystem impacts of salinization, and informing conservation and management decisions.

Keywords

Climate change Biodiversity Functional diversity Human disturbances Macroinvertebrates Salinity tolerance 

Notes

Acknowledgements

Financial support was provided by the Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT, Panamá) in the form of a doctoral fellowship to AMC and a research grant (No. ITE12-002) to LFD. CKG was supported by a National Science Foundation grant (IOS-1457383). Additional support was provided by Instituto para la Formación y Aprovechamiento de los Recursos Humanos in the form of a doctoral fellowship to AMC, and by Sistema Nacional de Investigación (SNI, Panamá) to DMTS and LFD. DMTS was also supported by a postdoctoral fellowships from the Fonds Recherche Nature et Technologies Quebec (FQRNT). Finally, the authors thank two anonymous reviewers and editor Eric R. Larson for their comments and suggestions that helped improve an earlier version of the manuscript.

Supplementary material

10750_2017_3403_MOESM1_ESM.eps (15 kb)
Supplementary material 1 (EPS 14 kb)
10750_2017_3403_MOESM2_ESM.eps (21 kb)
Supplementary material 2 (EPS 21 kb)
10750_2017_3403_MOESM3_ESM.eps (14 kb)
Supplementary material 3 (EPS 14 kb)
10750_2017_3403_MOESM4_ESM.eps (13 kb)
Supplementary material 4 (EPS 12 kb)
10750_2017_3403_MOESM5_ESM.eps (16 kb)
Supplementary material 5 (EPS 16 kb)
10750_2017_3403_MOESM6_ESM.eps (18 kb)
Supplementary material 6 (EPS 17 kb)

References

  1. Adelman, I. R., S. J. Lloyd & G. D. Siesennop, 1976. Acute toxicity of sodium chloride, pentachlorophenol, guthion, and hexavalent chromium to fathead minnows (Pimephales auratus) and Goldfish (Carassius). Journal of the Fisheries Board of Canada 33: 203–208.CrossRefGoogle Scholar
  2. Allan, K., 2006. Biological Effects of Secondary Salinisation on freshwater macroinvertebrates in Tasmania: The acute salinity toxicity testing of seven macroinvertebrates. Master of Applied Science. James Cook University, Townsville.Google Scholar
  3. Altig, R., M. R. Whiles & C. L. Taylor, 2007. What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats. Freshwater Biology 52: 386–395.CrossRefGoogle Scholar
  4. Andersen, N. M., 1999. The evolution of marine insects: phylogenetic, ecological and geographical aspects of species diversity in marine water striders. Ecography 22: 98–111.CrossRefGoogle Scholar
  5. Arambasic, M. B., S. Bjelic & G. Subakov, 1995. Acute Toxicity of Heavy Metals (copper, lead, zinc), phenol and sodium on Allium cep L., Lepidium sativum L. and Daphnia magna. Comparative Investigations and Practical Applications 29: 497–503.Google Scholar
  6. Bacher, G. J., & J. S. Garnham, 1992. The effect of salinity to several freshwater aquatic species of southern Victoria. Freshwater Ecology Section, Flora and Fauna Division, Department of Conservation and Environment, EPA Report SRS 92/003 Melbourne.Google Scholar
  7. Bailey, P., & K. James, 2000. Riverine and wetland salinity impacts—Assessment of R & D needs. Land and Water Resources Research and Development Corporation, Occassional Paper No. 25/99.Google Scholar
  8. Birge, W. J., J. A. Black, A. G. Westerman, T. M. Short, S. B. Taylor, D. M. Bruser, & E. D. Wallingford, 1985. Recommendations on numerical values for regulating iron and chloride concentrations for the purpose of protecting warmwater species of aquatic life in the Commonwealth of Kentucky. Memorandum of Agreement No. 5429. Kentucky Natural Resources and Environment.Google Scholar
  9. Blasius, B. J. & R. W. Merritt, 2002. Field and laboratory investigations on the effects of road salt (NaCl) on stream macroinvertebrate communities. Enviromental Pollution 120: 219–231.CrossRefGoogle Scholar
  10. Biswas, S. R. & A. U. Mallik, 2010. Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology 91: 28–35.PubMedCrossRefGoogle Scholar
  11. Boyero, L., R. G. Pearson, D. Dudgeon, M. A. S. Graça, M. O. Gessner, R. J. Albariño, V. Ferreira, C. M. Yule, A. J. Boulton, M. Arunachalam, M. Callisto, E. Chauvet, A. Ramírez, J. Chará, M. S. Moretti, J. F. Gonçalves, J. E. Helson, A. M. Chará-Serna, A. C. Encalada, J. N. Davies, S. Lamothe, A. Cornejo, A. O. Y. Li, L. M. Buria, V. D. Villanueva, M. C. Zúñiga & C. M. Pringle, 2011. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92: 1839–1848.PubMedCrossRefGoogle Scholar
  12. Bringolf, R. B., T. J. Kwak, W. G. Cope & M. S. Larimore, 2005. Salinity tolerance of flathead catfish: implications for dispersal of introduced populations. Transactions of the American Fisheries Society 134: 927–936.CrossRefGoogle Scholar
  13. Browne, S., 2005. The role of acute toxicity data for South African freshwater macroinvertebrates in the derivation of water quatlity guidelines for salinity. Rhodes University, Master of Science.Google Scholar
  14. Cañedo-Argüelles, M., B. J. Kefford, C. Piscart, N. Prat, R. B. Schäfer & C.-J. Schulz, 2013. Salinisation of rivers: an urgent ecological issue. Environmental pollution. Elsevier, New York: 157–167.Google Scholar
  15. Chadwick, M. A. & J. W. Feminella, 2001. Influence of salinity and temperature on the growth and production of a freshwater mayfly in the Lower Mobile River, Alabama. Limnology and Oceanography 46: 532–542.CrossRefGoogle Scholar
  16. Cheng, L., 2005. Marine Insects. Scripps Institution of Oceanography. University of California, La Jolla, Calif. 92093, USA.Google Scholar
  17. Conti, L., A. Schmidt-Kloiber, G. Grenouillet & W. Graf, 2014. A trait-based approach to assess the vulnerability of European aquatic insects to climate change. Hydrobiologia 721: 297–315.CrossRefGoogle Scholar
  18. Cormier, S. M., G. W. Suter, L. Zheng & G. J. Pond, 2013. Assessing causation of the extirpation of stream macroinvertebrates by a mixture of ions. Environmental Toxicology and Chemistry 32: 277–287.PubMedCrossRefGoogle Scholar
  19. Courchamp, F., B. D. Hoffmann, J. C. Russell, C. Leclerc & C. Bellard, 2014. Climate change, sea-level rise, and conservation: keeping island biodiversity afloat. Trends in Ecology & Evolution 29: 127–130.CrossRefGoogle Scholar
  20. Covich, A. P., M. A. Palmer & T. A. Crowl, 1999. The role of benthic invertebrate species in freshwater ecosystems zoobenthic species influence energy flows and nutrient cycling. BioScience 49: 119–127.CrossRefGoogle Scholar
  21. Cowgill, U. M. & D. P. Milazzo, 1991. The sensitivity of two cladocerans to water quality variables: alkalinity. Archives of Environmental Contamination and Toxicology 21: 224–232.CrossRefGoogle Scholar
  22. Cummins, K. W., 1973. Trophic Relations of Aquatic Insects. Annual Review of Entomology 18: 183–206.CrossRefGoogle Scholar
  23. Cummins, K. W., M. A. Wilzbach, D. M. Gates, J. B. Perry & W. B. Taliaferro, 1989. Shredders and Riparian Vegetation. BioScience 39: 24–30.CrossRefGoogle Scholar
  24. Damgaard, J., 2000. Phylogeny of sea skaters, Halobates Eschscholtz (Hemiptera, Gerridae), based on mtDNA sequence and morphology. Zoological Journal of the Linnean Society 130: 511–526.CrossRefGoogle Scholar
  25. Danks, H. V., 2002. Modification of adverse conditions by insects. Oikos 99: 10–24.CrossRefGoogle Scholar
  26. De León, L. F. & A. M. Castillo, 2015. Rhinella marina (Cane toad). Salinity tolerance. Herpetological Review 46: 237–238.Google Scholar
  27. De León, L. F. & O. R. Lopez, 2016. Biodiversity beyond trees: panama’s Canal provides limited conservation lessons for Nicaragua. Biodiversity and Conservation 25: 2821–2825.CrossRefGoogle Scholar
  28. Dickman, M. D. & M. B. Gochnauer, 1978. Impact of sodium chloride on the microbiota of a small stream. Environmental Pollution 17: 109–126.CrossRefGoogle Scholar
  29. Dobson, M., A. Magana, J. M. Mathooko & F. K. Ndegwa, 2002. Detritivores in Kenyan highland streams: more evidence for the paucity of shredders in the tropics? Freshwater Biology 47: 909–919.CrossRefGoogle Scholar
  30. Dowden, B. F. & H. J. Bennett, 1965. Toxicity of selected chemicals to certain animals. Journal (Water Pollution Control Federation) 37: 1308–1316.Google Scholar
  31. Dunlop, J. E., N. Horrigan, G. McGregor, B. J. Kefford, S. Choy & R. Prasad, 2007. Effect of spatial variation on salinity tolerance of macroinvertebrates in Eastern Australia and implications for ecosystem protection trigger values. Environmental Pollution 151: 1–10.Google Scholar
  32. Echols, B. S., R. J. Currie & D. S. Cherry, 2010. Preliminary results of laboratory toxicity tests with the mayfly, Isonychia bicolor (Ephemeroptera: Isonychiidae) for development as a standard test organism for evaluating streams in the Appalachian coalfields of Virginia and West Virginia. Environmental Monitoring and Assessment 169: 487–500.PubMedCrossRefGoogle Scholar
  33. Forbes, A. T. & B. R. Allanson, 1970. Ecology of the Sundays River Part II. Osmoregulation in some Mayfly nymphs (Ephemeroptera: Baetidae). Hydrobiologia 36: 489–503.CrossRefGoogle Scholar
  34. Gardner, K. M. & T. V. Royer, 2010. Effect of road salt application on seasonal chloride concentrations and toxicity in south-central Indiana streams. Journal of Environmental Quality 39: 1036–1042.PubMedCrossRefGoogle Scholar
  35. Goetsch, P. & C. G. Palmer, 1997. Environmental contamination and toxicology salinity tolerances of selected macroinvertebrates of the Sabie River, Kruger National Park, South Africa. Archives of Environmental Contamination and Toxicology 32: 32–41.PubMedCrossRefGoogle Scholar
  36. Gooderham, J. & E. Tsyrlin, 2002. The waterbug book. CSIRO Publishing, Clayton.Google Scholar
  37. Gosh, A. K. & R. N. Pal, 1969. Toxicity of Four Therapeutic Compounds To Fry of Indian Major Carps. Fishery Technology 6: 120–123.Google Scholar
  38. Halse, S. A., R. J. Shiel & W. D. Williams, 1998. Aquatic invertebrates of Lake Gregory, northwestern Australia, in relation to salinity and ionic composition. Hydrobiologia 381: 15–29.CrossRefGoogle Scholar
  39. Hamilton, R. W., J. K. Buttner & R. G. Brunetti, 1975. Lethal levels of sodium chloride and potassium chloride for an Oligochaete, a Chironomid Midge, and a Caddisfly of Lake Michigan. Environmental Protection Agency 4: 1003–1006.Google Scholar
  40. Hargraves, N. N., 1975. The effects of Cadmium on Aspects of Osmotic and Ionic Regulation in Paratya tasmaniensis Riek (Atyidae: Crustacea). B.Sc. (Hons) Thesis, University of Tasmania.Google Scholar
  41. Hart, B. T., P. Bailey, R. Edwards, K. Hortle, K. James, A. McMahon, C. Meredith & K. Swadling, 1990. Effects of salinity on river, stream and wetland ecosystems in Victoria, Australia. Water Research 24: 1103–1117.CrossRefGoogle Scholar
  42. Hart, B. T., P. Bailey, R. Edwards, K. Hortle, K. James, A. McMahon, C. Meredith & K. Swadling, 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210: 105–144.CrossRefGoogle Scholar
  43. Hassall, C. & D. J. Thompson, 2008. The effects of environmental warming on Odonata: a review. International Journal of Odonatology 11: 131–153.CrossRefGoogle Scholar
  44. Hassell, K. L., B. J. Kefford & D. Nugegoda, 2006. Sub-lethal and chronic salinity tolerances of three freshwater insects: Cloeon sp. and Centroptilum sp. (Ephemeroptera: Baetidae) and Chironomus sp. (Diptera: Chironomidae). The Journal of Experimental Biology 209: 4024–4032.PubMedCrossRefGoogle Scholar
  45. Helson, J. E. & D. D. Williams, 2013. Development of a macroinvertebrate multimetric index for the assessment of low-land streams in the neotropics. Ecological Indicators. Elsevier, New York: 167–178.Google Scholar
  46. Herbert, E. R., P. Boon, A. J. Burgin, S. C. Neubauer, R. B. Franklin, M. Ardón, K. N. Hopfensperger, L. P. M. Lamers & P. Gell, 2015. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6: art206.CrossRefGoogle Scholar
  47. Hinton, M. J. & A. G. Eversole, 1979. Toxicity of ten chemicals commonly used in aquaculture to the black eel stage of the american eel. Proceedings of the World Mariculture Society 10: 554–560.CrossRefGoogle Scholar
  48. Horrigan, N., S. Choy, J. Marshall & F. Recknagel, 2005. Response of stream macroinvertebrates to changes in salinity and the development of a salinity index. Marine and Freshwater Research 56: 825–833.CrossRefGoogle Scholar
  49. Horrigan, N., J. E. Dunlop, B. J. Kefford & F. Zavahir, 2007. Acute toxicity largely reflects the salinity sensitivity of stream macroinvertebrates derived using field distributions. Marine and Freshwater Research 58: 178–186.CrossRefGoogle Scholar
  50. IPCC, 2000. IPCC Special Report Emissions Scenarios. Intergovernmental Panel on Climate Change.Google Scholar
  51. IPCC, 2007. Cambio climático 2007: Informe de síntesis. Informe del Grupo Intergubernamental de Expertos sobre el Cambio Climático. Intergovernmental Panel on Climate Change.Google Scholar
  52. James, K., B. Cant & T. Ryan, 2003. Responses of freshwater biota to rising salinity levels and implications for saline water management: a review. Australian Journal of Botany 51: 703–713.CrossRefGoogle Scholar
  53. Jeppesen, E., M. Søndergaard, A. R. Pedersen, K. Jürgens, A. Strzelczak, T. L. Lauridsen & L. S. Johansson, 2007. Salinity induced regime shift in shallow brackish lagoons. Ecosystems 10: 47–57.CrossRefGoogle Scholar
  54. Johnsson, J. & W. C. Clarke, 1988. Development of seawater adaptation in juvenile steelhead trout (Salmo gairdneri) and domesticated rainbow trout (Salmo gairdneri) – effects of size, temperature and photoperiod. Aquaculture 71: 247–263.CrossRefGoogle Scholar
  55. Kang, S. R. & S. L. King, 2012. Influence of salinity and prey presence on the survival of aquatic macroinvertebrates of a freshwater marsh. Aquatic Ecology 46: 411–420.CrossRefGoogle Scholar
  56. Karraker, N. E., 2007. Are embryonic and larval green frogs (Rana clamitans) insensitive to road deicing salt? Herpetological Conservation and Biology 2: 35–41.Google Scholar
  57. Kaushal, S. S., P. M. Groffman, G. E. Likens, K. T. Belt, W. P. Stack, V. R. Kelly, L. E. Band & G. T. Fisher, 2005. Increased salinization of fresh water in the northeastern United States. Proceedings of the National academy of Sciences of the United States of America 102: 13517–13520.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kay, W. R., S. A. Halse, M. D. Scanlon & M. J. Smith, 2001. Distribution and environmental tolerances of aquatic macroinvertebrate families in the agricultural zone of southwestern Australia. Journal of the North America Benthological Society 20: 182–199.CrossRefGoogle Scholar
  59. Kefford, B. J., P. J. Papas & D. Nugegoda, 2003. Relative salinity tolerance of macroinvertebrates from the Barwon River, Victoria, Australia. Marine & Freshwater Research 54: 755–765.CrossRefGoogle Scholar
  60. Kefford, B. J., A. Dalton, C. G. Palmer & D. Nugegoda, 2004a. The salinity tolerance of eggs and hatchlings of selected aquatic macroinvertebrates in south-east Australia and South Africa. Hydrobiologia 517: 179–192.CrossRefGoogle Scholar
  61. Kefford, B. J., C. G. Palmer, L. Pakhomova & D. Nugegoda, 2004b. Comparing test systems to measure the salinity tolerance of freshwater invertebrates. Water SA 30: 499–506.CrossRefGoogle Scholar
  62. Kefford, B. J., P. J. Papas, L. Metzeling & D. Nugegoda, 2004c. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity? Environmental Pollution 129: 355–362.PubMedCrossRefGoogle Scholar
  63. Kefford, B. J., C. G. Palmer & D. Nugegoda, 2005. Relative salinity tolerance of freshwater macroinvertebrates from the south-east Eastern Cape, South Africa compared with the Barwon Catchment, Victoria. Australia. Marine and Freshwater Research 56: 163.CrossRefGoogle Scholar
  64. Kefford, B. J., D. Nugegoda, L. Metzeling & E. J. Fields, 2006a. Validating species sensitivity distributions using salinity tolerance of riverine macroinvertebrates in the southern Murray-Darling Basin (Victoria, Australia). Canadian Journal of Fisheries and Aquatic Sciences 63: 1865–1877.CrossRefGoogle Scholar
  65. Kefford, B. J., D. Nugegoda, L. Zalizniak, E. J. Fields & K. L. Hassell, 2006b. The salinity tolerance of freshwater macroinvertebrate eggs and hatchlings in comparison to their older life-stages: a diversity of responses. Aquatic Ecology 41: 335–348.CrossRefGoogle Scholar
  66. Kefford, B. J., L. Zalizniak & D. Nugegoda, 2006c. Growth of the damselfly Ischnura heterosticta is better in saline water than freshwater. Environmental Pollution 141: 409–419.PubMedCrossRefGoogle Scholar
  67. Kefford, B. J., E. J. Fields, C. Clay & D. Nugegoda, 2007. The salinity tolerance of riverine microinvertebrates from the southern Murray-Darling Basin. Marine and Freshwater Research 58: 1019–1031.CrossRefGoogle Scholar
  68. Kefford, B. J., R. Marchant, R. B. Schäfer, L. Metzeling, J. E. Dunlop, S. C. Choy & P. Goonan, 2011. The definition of species richness used by species sensitivity distributions approximates observed effects of salinity on stream macroinvertebrates. Environmental Pollution 159: 302–310.PubMedCrossRefGoogle Scholar
  69. Kefford, B. J., G. L. Hickey, A. Gasith, E. Ben-David, J. E. Dunlop, C. G. Palmer, K. Allan, S. C. Choy & C. Piscart, 2012a. Global scale variation in the salinity sensitivity of riverine macroinvertebrates: eastern Australia, France. Israel and South Africa, PloS ONE: 7.Google Scholar
  70. Kefford, B. J., R. B. Schäfer & L. Metzeling, 2012b. Risk assessment of salinity and turbidity in Victoria (Australia) to stream insects’ community structure does not always protect functional traits. Science of the Total Environment 415: 61–68.PubMedCrossRefGoogle Scholar
  71. Kefford, B. J., D. Buchwalter, M. Cañedo-Argüelles, J. Davis, R. Duncan, A. Hoffmann & R. Thompson, 2016. Salinized rivers: degraded systems or new habitats for salt-tolerant faunas? Biology Letters 12: 1–7.CrossRefGoogle Scholar
  72. Kostecki, P. T., 1984. The effect of osmotic and ion-osmotic stresses on the blood and urine composition and urine flow of rainbow trout (Salmo gairdneri). Comparative Biochemistry and Physiology 79: 215–221.PubMedCrossRefGoogle Scholar
  73. Kottek, M., J. Grieser, C. Beck, B. Rudolf & F. Rubel, 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15: 259–263.CrossRefGoogle Scholar
  74. Kozak, G. M., R. S. Brennan, E. L. Berdan, R. C. Fuller & A. Whitehead, 2013. Functional and population genomic divergence within and between two species of killifish adapted to different osmotic niches. Evolution 68: 63–80.PubMedCrossRefGoogle Scholar
  75. Krivosheina, M., 2004. Krivosheina, M.G., Morphological and ecological adaptation of dipteran larvae (Insecta, Diptera) to the stress conditions, Doctoral Sci. (Biol.) Dissertation, Moscow.Google Scholar
  76. Kszos, L. A., J. D. Winter & T. A. Storch, 1990. Toxicity of chautauqua lake bridge runoff to young-of-the-year sunfish (Lepomis macrochirus). Bulletin of Environmental Contamination and Toxicology 45: 923–930.PubMedCrossRefGoogle Scholar
  77. Kunz, J. L., J. M. Conley, D. B. Buchwalter, T. J. Norberg-King, N. E. Kemble, N. Wang & C. G. Ingersoll, 2013. Use of reconstituted waters to evaluate effects of elevated major ions associated with mountaintop coal mining on freshwater invertebrates. Environmental Toxicology and Chemistry 32: 2826–2835.PubMedCrossRefGoogle Scholar
  78. Lasier, P. J., P. V. Winger & R. E. Reinert, 1997. Toxicity of alkalinity to Hyalella azteca. Bulletin of Environmental Contamination and Toxicology 59: 807–814.PubMedCrossRefGoogle Scholar
  79. Leigh, C., R. Stubbington, F. Sheldon & A. J. Boulton, 2013. Hyporheic invertebrates as bioindicators of ecological health in temporary rivers: a meta-analysis. Ecological Indicators 32: 62–73.CrossRefGoogle Scholar
  80. Lin, Y. M., C. N. Chen & T. H. Lee, 2003. The expression of gill Na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water. Comparative Biochemistry and Physiology Part A 135: 489–497.CrossRefGoogle Scholar
  81. Martínez-Jerónimo, F. & L. Martínez-Jerónimo, 2007. Chronic effect of NaCl salinity on a freshwater strain of Daphnia magna Straus (Crustacea: Cladocera): a demographic study. Ecotoxicology and Environmental Safety 67: 411–416.PubMedCrossRefGoogle Scholar
  82. Merritt, R., J. R. Wallace, M. J. Higgins, M. K. Alexander, M. B. Berg, W. T. Morgan, K. W. Cummins & B. Vandeneeden, 1996. Procedures for the functional analysis of invertebrate communities of the Kissimmee River-floodplain ecosystem. The Florida Academy of Sciences 59: 215–274.Google Scholar
  83. Merritt, R. W., K. W. Cummins, M. B. Berg, J. A. Novak, M. J. Higgins, K. J. Wessell & J. L. Lessard, 2002. Development and application of a macroinvertebrate functional-group approach in the bioassessment of remnant river oxbows in southwest Florida. Journal of the North American Benthological Society 21: 290–310.CrossRefGoogle Scholar
  84. Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An Introduction to Aquatic Insects of North America, 4th ed. Kendall/Hunt Publishing Company, Dubuque.Google Scholar
  85. Meyer, A. & J. A. Huete-Pérez, 2013. Nicaragua canal could wreak environmental ruin. Nature 506: 2013–2015.Google Scholar
  86. Myers, J. J. & C. C. Kohler, 2000. Acute responses to salinity for sunshine bass and palmetto bass. North American Journal of Aquaculture 62: 195–202.CrossRefGoogle Scholar
  87. Newman, M. C. & M. S. Aplin, 1992. Enhancing toxicity data interpretation and prediction of ecological risk with survival time modeling: an illustration using sodium chloride toxicity to mosquitofish (Gambusia holbrooki). Aquatic Toxicology 23: 85–96.CrossRefGoogle Scholar
  88. Nielsen, D. L. & T. J. Hillman, 2000. Ecological effects of dryland salinity on aquatic ecosystems. CRC for Freshwater Ecology, Murray Darling Freshwater Research Centre, Albury.Google Scholar
  89. Nielsen, D. L., M. A. Brock, G. N. Rees & D. S. Baldwin, 2003. Effects of increasing salinity on freshwater ecosystems in Australia. Australian Journal of Botany 51: 655–665.CrossRefGoogle Scholar
  90. Noble, R. A. A., I. G. Cowx, D. Goffaux & P. Kestemont, 2007. Assessing the health of European rivers using functional ecological guilds of fish communities: standardising species classification and approaches to metric selection. Fisheries Management and Ecology 14: 381–392.CrossRefGoogle Scholar
  91. O’Brien, G. C., 2003. An ecotoxicological investigation into the ecological integrity of a segment of the Elands River, Mpumalanga, South Africa. Magister Scientiae in Zoology. Rand Afrikaans University, Johannesburg.Google Scholar
  92. Padhye, A. D. & H. V. Ghate, 1992. Sodium chloride and potassium chloride tolerance of different stages of the frog, Microhyla ornata. Herpetological Journal 2: 18–23.Google Scholar
  93. Palmer, C. G., & P. A. Sherman, 2000. Application of an Artificial Stream system to Investigate the Water Quality Tolerances of Indigenous, South African, riverine Macroinvertebrates. WRC Report No.686/1/00.Google Scholar
  94. Palmer, C. G., B. Maart, A. R. Palmer & J. H. O’Keeffe, 1996. An assessment of macroinvertebrate functional feeding groups as water quality indicators in the Buffalo River, eastern Cape Province, South Africa. Hydrobiologia 318: 153–164.CrossRefGoogle Scholar
  95. Palmer, C. G., W. J. Muller, A. K. Gordon, P. A. Scherman, H. D. Davies-Coleman, L. Pakhomova & E. De Kock, 2004. The development of a toxicity database using freshwater macroinvertebrates, and its application to the protection of South African water resources. South African Journal of Science 100: 643–650.Google Scholar
  96. Paradise, T. A., 2009. The sublethal salinity tolerance of selected freshwater macroinvertebrate species. Master of Applied Science. Biotechnology and Environmental Biology. RMIT University, Vietnam.Google Scholar
  97. Patrick, R., J. J. Cairns & A. Scheier, 1968. The Relative sensitivity of diatoms, snails, and fish to twenty common constituents of industrial wastes. The Progressive Fish-Culturist 30(3): 173–174.CrossRefGoogle Scholar
  98. Peel, M. C., B. L. Finlayson & T. A. McMahon, 2006. Updated map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633–1644.CrossRefGoogle Scholar
  99. Pinder, A. M., S. A. Halse, J. M. McRae & R. J. Shiel, 2005. Occurrence of aquatic invertebrates of the wheatbelt region of Western Australia in relation to salinity. Hydrobiologia 543: 1–24.CrossRefGoogle Scholar
  100. Piscart, C., J. C. Moreteau & J. N. Beisel, 2005. Biodiversity and structure of macroinvertebrate communities along a small permanent salinity gradient (Meurthe River, France). Hydrobiologia 551: 227–236.CrossRefGoogle Scholar
  101. Piscart, C., P. Usseglio-Polatera, J.-C. Moreteau & J.-N. Beisel, 2006. The role of salinity in the selection of biological traits of freshwater invertebrates. Archiv für Hydrobiologie 166: 185–198.CrossRefGoogle Scholar
  102. Piscart, C., B. J. Kefford & J. N. Beisel, 2011. Are salinity tolerances of non-native macroinvertebrates in France an indicator of potential for their translocation in a new area? Limnologica Elsevier GmbH. 41: 107–112.CrossRefGoogle Scholar
  103. Pond, G. J., 2010. Patterns of Ephemeroptera taxa loss in Appalachian headwater streams (Kentucky, USA). Hydrobiologia 641: 185–201.CrossRefGoogle Scholar
  104. Pratt, J. R. & J. J. Cairns, 1985. Functional groups in the protozoa: roles in differing ecosystems. The Journal of Protozoology 32: 415–423.CrossRefGoogle Scholar
  105. R Development Core, 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  106. Rahmstorf, S., 2007. A semi-empirical approach to projecting future sea-level rise. Science 315: 368–370.PubMedCrossRefGoogle Scholar
  107. Ramírez, A. & P. E. Gutiérrez-Fonseca, 2014. Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature. Revista de Biologia Tropical 62: 155–167.PubMedCrossRefGoogle Scholar
  108. Rengasamy, P., 2006. World salinization with emphasis on Australia. Journal of Experimental Botany 57: 1017–1023.PubMedCrossRefGoogle Scholar
  109. Rosenberg, D. M. & Vincent H. Resh, 1993. Freshwater Biomonitoring and benthic Macroinvertebrates. Chapman and Hall, New York: 1993.Google Scholar
  110. Rutherford, J. C., & B. J. Kefford, 2005. Effects of salinity on stream ecosystems: improving models for macroinvertebrates. CSIRO Land and Water Technical Report 22/05.Google Scholar
  111. Ryder, D., & S. Vink, 2007. Managing regulated flows and contaminant cycles in floofplain rivers. Salt, Nutrient, Sediment and Interactions: Findings from the National river Contaminants Program. Land & Water Australia.Google Scholar
  112. Sanzo, D. & S. J. Hecnar, 2006. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environmental Pollution 140: 247–256.PubMedCrossRefGoogle Scholar
  113. SEWRPC Community Assistance Planning Report, 2001. Acute Toxicity of Sodium Chloride to Freshwater Aquatic organisms. SEWRPC Community Assistance Planning Report No. 316.Google Scholar
  114. Simpson, P. E., M. R. González, C. M. Hart & S. H. Hurlbert, 1998. Salinity and fish effects on Salton Sea microsystems: water chemistry and nutrient cycling. Hydrobiologia 381: 105–128.CrossRefGoogle Scholar
  115. Slaughter, A. R., 2005. The refinement of protective salinity guidelines for South African freshwater resources. Distribution. Master of Science at Rhodes UniversityGoogle Scholar
  116. Stoks, R., A. N. Geerts & L. De Meester, 2013. Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential. Evolutionary Applications 7: 42–55.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Sutcliffe, D. W., 1961. Studies on salt and water balance in caddis larvae (Trichoptera): I. Osmotic and ionic regulation of body fluids in Limnephilus affinis Curtis. Journal of Experimental Biology 38: 501–519.Google Scholar
  118. Sutcliffe, D. W., 1974. Sodium regulation and adaptation to fresh water in the isopod genus Asellus. The Journal of Experimental Biology 61: 719–736.PubMedGoogle Scholar
  119. Szöcs, E., E. Coring, J. Bäthe & R. B. Schäfer, 2014. Effects of anthropogenic salinization on biological traits and community composition of stream macroinvertebrates. Science of the Total Environment 468–469: 943–949.PubMedCrossRefGoogle Scholar
  120. Thornton, K. W. & J. R. Sauer, 1972. Physiological Effects of NaCl on Chironomus attenuatus (Diptera: Chironomidae). Oklahoma State University, Stillwater: 872–875.Google Scholar
  121. Thorp, J. H. & D. C. Rogers, 2011. Field Guide to Freshwater Invertebrates of North America. Academic Press, Massachusetts.Google Scholar
  122. Timms, B. V., 1998. A study of Lake Wyara, an episodically filled saline lake in southwest Queensland, Australia. International Journal of Salt Lake Research 7: 113–132.Google Scholar
  123. Tomanova, S., E. Goitia & J. Helešic, 2006. Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia 556: 251–264.CrossRefGoogle Scholar
  124. Trama, F. B., 1954. The Acute Toxicity of Some Common Salts of Sodium, Potassium and Calcium to the Common Bluegill (Lepomis macrochirus Rafinesque). Proceedings of the Academy of Natural Sciences of Philadelphia 106: 185–205.Google Scholar
  125. Wallace, J. B. & R. W. Merritt, 1980. Filter-Feeding Ecology of Aquatic Insects. Annual Review of Entomology 25: 103–132.CrossRefGoogle Scholar
  126. Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41: 115–139.PubMedCrossRefGoogle Scholar
  127. Wallen, I. E., W. C. Greer & R. Lasater, 1957. Pollution to “Gambusia Affinis” of certain pure chemicals in turbid waters. Sewage and Industrial Wastes 29: 695–711.Google Scholar
  128. Walsh, C. J., 1994. Ecology of Epifaunal Caridean Shrimps in the Hopkins River Estuary, and the role of Estuaries in the life history of the Atyid Paratya Australiensis Kemp, 1917 in South-Eastern Australia. Deakin University, Burwood.Google Scholar
  129. Waterkeyn, A., P. Grillas, B. Vanschoenwinkel & L. Brendonck, 2008. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biology 53: 1808–1822.CrossRefGoogle Scholar
  130. Wichard, W., 1975. Osmoregulatory adaptations of aquatic insects in the lake district “Neudiedlersee”. Nachrichtenblatt der Bayerischen Entomologen 24: 81–87.Google Scholar
  131. Wigglesworth, V. B., 1933. The adaptation of mosquito larvae to salt water. Journal of Experimental Biology 32: 27–37.Google Scholar
  132. Williams, W. D., 1984. Salinity as a Water Quality and Determinant in Australia. Australian Water Research Council Research. Report No. 80/121.Google Scholar
  133. Williams, W. D., 2001. Anthropogenic salinisation of inland waters. Hydrobiologia 466: 329–337.CrossRefGoogle Scholar
  134. Williams, W. D. & J. E. Sherwood, 1994. Definition and measurement of salinity in salt lakes. International Journal of Salt Lake Research 3: 53–63.CrossRefGoogle Scholar
  135. Williams, W. D., R. G. Taaffe & A. J. Boulton, 1991. Longitudinal distribution of macroinvertebrates in two rivers subject to salinization. Hydrobiologia 210: 151–160.CrossRefGoogle Scholar
  136. Williams, W. D., P. De Deckker & R. J. Shiel, 1998. The limnology of Lake Torrens, an episodic salt lake of central Australia, with particular reference to unique events in 1989. Hydrobiologia 384: 101–110.CrossRefGoogle Scholar
  137. Winterbourn, M. J. & N. H. Anderson, 1980. The life history of Philanisus plebeius Walker (Trichoptera: Chathamiidae), a caddisfly whose eggs were found in a starfish. Ecological Entomology 5: 293–304.CrossRefGoogle Scholar
  138. Wisconsin State Laboratory of Hygiene, 1998. Unpublished Data on Chloride Toxicity of Aquatic Species. From A. Letts (Technical Manager, Morton International, Inc., Chicago, Illinois) to M.S. Evans (National Hydrology Research Institute, Environment Canada).Google Scholar
  139. Wurtsbaugh, W. A., 1992. Food-web modification by an invertebrate predator in the Great Salt Lake (USA). Oecologia 89: 168–175.PubMedCrossRefGoogle Scholar
  140. Zalizniak, L., B. Kefford & D. Nugegoda, 2006. Is salinity the same? I. The effect of ionic compositions on the salinity tolerance of five species of freshwater invertebrates. Marine and Freshwater Research 57: 75–82.CrossRefGoogle Scholar
  141. Zamora-Muñoz, C. & B. W. Svensson, 1996. Survival of caddis larvae in relation to their case material in a group of temporary and permanent. Freshwater Biology 36: 23–31.CrossRefGoogle Scholar
  142. Zinchenko, T. D. & L. V. Golovatyuk, 2013. Salinity tolerance of macroinvertebrates in stream waters (review). Arid Ecosystems 3: 113–121.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP)Panamá 5República de Panamá
  2. 2.Department of BiotechnologyAcharya Nagarjuna UniversityGunturIndia
  3. 3.Department of BiologyMcGill UniversityMontréalCanada
  4. 4.Department of BiologyColorado State UniversityFort CollinsUSA
  5. 5.Department of BiologyUniversity of Massachusetts BostonBostonUSA

Personalised recommendations