Susceptibility of two co-existing mytilid species to simulated predation under projected climate change conditions

Abstract

Properties of the shells and byssus filaments secreted by marine mussels are affected by environmental and biotic factors. In this study, we investigated the effects of pH and temperature on shell and byssus in artificially created monospecific and mixed aggregations of the indigenous mussel Mytilus galloprovincialis and the invasive mussel Xenostrobus securis. The variability in the response of the mussels was mainly explained by species-specific interactions derived from the type of aggregation. In the mixed groups, acidic conditions caused a decrease in byssus strength in M. galloprovincialis, but an increase in byssus strength in X. securis. Increased temperature positively affected shell strength in X. securis, but only in mixed aggregations. Interactive effects of acidification and warming were only detected in the organic matter of shells, the strength of which decreased in M. galloprovincialis in mixed aggregations. Although the invasive mussel may be able to take advantage of changed conditions by enhancing byssal attachment, the effects that acidification has on shells may make this species more vulnerable to some predators. The study findings provide some insight into the responses of protective and attachment structures of mussels to biotic and abiotic stressors, highlighting how species interactions may shape the future of mytilid populations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Addadi, L., D. Joester, F. Nudelman & S. Weiner, 2006. Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry - A European Journal 12: 980–987.

    CAS  Article  Google Scholar 

  2. Amaral, V., H. N. Cabral & M. J. Bishop, 2012. Effects of estuarine acidification on predator–prey interactions. Marine Ecology Progress Series 445: 117–127.

    Article  Google Scholar 

  3. Angert, A. L., S. L. LaDeau & R. S. Ostfeld, 2013. Climate change and species interactions: ways forward. Annals of the New York Academy of Sciences 1297: 1–7.

    Article  PubMed  Google Scholar 

  4. Babarro, J. M. F. & M. J. Abad, 2013. Co-existence of two mytilids in a heterogeneous environment: mortality, growth, and strength of shell and byssus attachment. Marine Ecology Progress Series 476: 115–128.

    Article  Google Scholar 

  5. Babarro, J. M. F. & L. A. Comeau, 2014. Byssus attachment strength of two mytilids in mono-specific and mixed-species mussel beds. Biofouling: The Journal of Bioadhesion and Biofilm Research 30: 975–985.

    Article  Google Scholar 

  6. Babarro, J. M. F. & M. J. Lassudrie, 2011. Ecophysiological responses of invasive and indigenous mytilids in the Ría de Vigo (NW Spain). Aquatic Living Resources 24: 303–315.

    Article  Google Scholar 

  7. Barbosa, M., J. Pestana & A. M. V. M. Soares, 2014. Predation life history responses to increased temperature variability. PLoS ONE 9(9): e107971.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Borthagaray, A. I. & A. Carranza, 2007. Mussels as ecosystem engineers: their contribution to species richness in a rocky littoral community. Acta Oecologica 31: 243–250.

    Article  Google Scholar 

  9. Chaparro, O. R., J. A. Montory, C. J. Segura & J. A. Pechenik, 2009. Effect of reduced pH on shells of brooded veligers in the estuarine bivalve Ostrea chilensis Philippi 1845. Journal of Experimental Marine Biology and Ecology 377: 107–112.

    CAS  Article  Google Scholar 

  10. Conover, W. J., 2012. The rank transformation – an easy and intuitive way to connect many nonparametric methods to their parametric counterparts for seamless teaching introductory statistics courses. WIREs Computational Statistics 4: 432–438.

    Article  Google Scholar 

  11. Dahlhoff, E., B. Buckley & B. Menge, 2001. Physiology of the rocky intertidal predator Nucella ostrina along an environmental stress gradient. Ecology 82: 2816–2829.

    Article  Google Scholar 

  12. Doney, S. C., V. J. Fabry, R. A. Feely & J. A. Kleypas, 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1: 169–192.

    Article  PubMed  Google Scholar 

  13. Duarte, C., J. M. Navarro, K. Acuña, R. Torres, P. H. Manríquez, M. A. Lardies, C. A. Vargas, N. A. Lagos & V. Aguilera, 2014. Combined effects of temperature and ocean acidification on the juvenile individuals of the mussel Mytilus chilensis. Journal of Sea Research 85: 308–314.

    Article  Google Scholar 

  14. Fabry, V. J., B. A. Seibel, R. A. Feely & J. C. Orr, 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65: 414–432.

    CAS  Article  Google Scholar 

  15. Fernández-Reiriz, M. J., P. Range, X. A. Álvarez-Salgado, J. Espinosa & U. Labarta, 2012. Tolerance of juvenile Mytilus galloprovincialis to experimental seawater acidification. Marine Ecology Progress Series 454: 65–74.

    Article  Google Scholar 

  16. Fitzer, S. C., L. Vittert, A. Bowman, N. A. Kamenos, V. R. Phoenix & M. Cusack, 2015. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection? Ecology and Evolution 5(21): 4875–4884.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fitzer, S. C., W. Zhu, K. E. Tanner, V. R. Phoenix, N. A. Kamenos & M. Cusack, 2017. Ocean acidification alters the material properties of Mytilus edulis shells. Journal of the Royal Society Interface 12: 20141227.

    Article  Google Scholar 

  18. Fabricius, K. E., C. Langdon, S. Uthicke, C. Humphrey, S. Noonan, G. Déath, R. Okazaki, N. Muehllehner, M. S. Glas & J. M. Lough, 2011. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1: 165–169.

    CAS  Article  Google Scholar 

  19. Gabriel, J. M., 1981. Differing resistance of various mollusc shell materials to simulated whelk attack. Journal of Zoology 194: 363–369.

    Article  Google Scholar 

  20. Gazeau, F., C. Quiblier, J. M. Jansen, J.-P. Gattuso, J. J. Middleburg & C. H. R. Heip, 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters 34: L07603.

    Article  Google Scholar 

  21. Gazeau, F., L. M. Parker, S. Comeau, J.-P. Gattuso, W. A. O’Connor, S. Martin, H.-O. Pörtner & P. M. Ross, 2013. Impacts of ocean acidification on marine shelled molluscs. Marine Biology 160: 2207–2245.

    CAS  Article  Google Scholar 

  22. Gestoso, I., C. Olabarria & F. Arenas, 2012. The invasive mussel Xenostrobus securis along the Galician Rias Baixas (NW of Spain): status of invasion. Cahiers de Biologie Marine 53: 391–396.

    Google Scholar 

  23. Gestoso, I., F. Arenas & C. Olabarria, 2015. Feeding behaviour of an intertidal snail: does past environmental stress affect predator choices and prey vulnerability? Journal of Sea Research 97: 66–74.

    Article  Google Scholar 

  24. Gestoso, I., C. Olabarria & F. Arenas, 2016. Ecological interactions modulate responses of two intertidal mussel species to changes in temperature and pH. Journal of Experimental Marine Biology and Ecology 474: 116–125.

    Article  Google Scholar 

  25. Hale, R., P. Calosi, L. McNeill, N. Mieszkowska & S. Widdicombe, 2011. Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120: 661–674.

    Article  Google Scholar 

  26. Harrington, M. J. & J. H. Waite, 2007. Holdfast heroics: comparing the molecular and mechanical properties of Mytilus californianus byssal threads. Journal of Experimental Biology 210: 4307–4318.

    CAS  Article  PubMed  Google Scholar 

  27. Hiebenthal, C., E. E. R. Philipp, A. Eisenhauer & M. Wahl, 2013. Effects of seawater pCO2 and temperature on shell growth, shell stability, condition and cellular stress of Western Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.). Marine Biology 160: 2073–2087.

    CAS  Article  Google Scholar 

  28. Hughes, L., 2012. Climate change impacts on species interactions: assessing the threat of cascading extinctions. In Hannath, L. (ed.), Saving a million species. Extinction risk from climate change. Island Press, Washington, DC.

    Google Scholar 

  29. IPCC, 2013. Climate change 2013. The Physical Science Basis. Summary for Policymakers. Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

    Google Scholar 

  30. Ivanina, A. V., G. H. Dickinson, O. B. Matoo, R. Bagwe, A. Dickinson, E. Beniash & I. M. Sokolova, 2013. Interactive effects of elevated temperature and CO2 levels on energy metabolism and biomineralization of marine bivalves Crassostrea virginica and Mercenaria mercenaria. Comparative Biochemistry and Physiology, Part A 166: 101–111.

    CAS  Article  Google Scholar 

  31. Jurgens, L. J. & B. Gaylord, 2016. Edge effects reverse facilitation by a widespread foundation species. Scientific Reports 6: 37573.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Kimura, T. & H. Sekiguchi, 2009. Spatial and temporal patterns of abundance of the exotic mytilid Xenostrobus securis and the native mytilid Musculista senhousia in the Lake Hamana, Japan. Marine Biodiversity Records 2: e89.

    Article  Google Scholar 

  33. Kroeker, K. J., F. Micheli, M. C. Gambi & T. R. Martz, 2011. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proceedings of the National Academy of Sciences of the United States of America 108: 14515–14520.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Kroeker, K. J., R. L. Kordas, R. Crim, I. E. Hendriks, L. Ramajo, G. S. Singh, C. M. Duarte & J.-P. Gattuso, 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology 19: 1884–1896.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kroeker, K. J., B. Gaylord, T. M. Hill, J. D. Hosfelt, S. H. Miller & E. Sanford, 2014. The role of temperature in determining species´ vulnerability to ocean acidification: a case study using Mytilus galloprovincialis. PLoS ONE 9(7): e100353.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lamarck, J.-B. M., 1819. Histoire naturelle des animaux sans vertèbres. Tome sixième, 1re partie. Paris: vi + 343 pp.

  37. Li, S., C. Liu, J. Huang, Y. Liu, G. Zheng, L. Xie & R. Zhang, 2015. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis. Journal of Experimental Biology 218: 3623–3631.

    Article  PubMed  Google Scholar 

  38. Mackenzie, C. L., G. A. Ormondroyd, S. F. Curling, R. J. Ball, N. M. Whiteley & S. K. Malham, 2014. Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation. PLoS One 9: e86764.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Marin, F., G. Luquet, B. Marie & D. Medakovic, 2008. Molluscan shell proteins: primary structure, origin, and evolution. Current Topics in Developmental Biology 80: 209–276.

    CAS  Article  PubMed  Google Scholar 

  40. Meehl, G. A., T. F. Stocker, W. D. Collins, P. Friedlingstein, A. T. Gaye, J. M. Gregory, et al., 2007. Global climate projections. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis & K. B. Averyt (eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

    Google Scholar 

  41. Michaelidis, B., C. Ouzounis, A. Paleras & H. O. Pörtner, 2005. Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels. Marine Ecology Progress Series 293: 109–118.

    Article  Google Scholar 

  42. Milano, S., G. Nehrke, A. D. Wanamaker Jr., I. Ballesta-Artero, T. Brey & B. R. Schöne, 2017. The effects of environment on Arctica islandica shell formation and architecture. Biogeosciences 14: 1577–1591.

    Article  Google Scholar 

  43. Montoya, J. M. & D. Raffaelli, 2010. Climate change, biotic interactions and ecosystem services. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2013–2018.

    Article  Google Scholar 

  44. Morse, J. W., A. Mucci & F. J. Millero, 1980. The solubility of calcite and aragonite in seawater of 35‰ salinity at 25 & #xB0;C and atmospheric pressure. Geochimica et Cosmochimica Acta 44: 85–94.

    CAS  Article  Google Scholar 

  45. Morton, B., 2008. Attack responses of the southern Australian whelk, Lepsiella vinosa (Lamarck, 1822) (Gastropoda: Muricidae), to novel bivalve prey: an experimental approach. Biological Invasions 10: 1265–1275.

    Article  Google Scholar 

  46. Nienhuis, S., A. R. Palmer & C. D. G. Harley, 2010. Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail. Proceedings of the Royal Society B: Biological Sciences 277(1693): 2553–2558.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. O’Donnell, M. J., M. N. George & E. Carrington, 2013. Mussel byssus attachment weakened by ocean acidification. Nature Climate Change 3: e587–e590.

    Google Scholar 

  48. Olabarria, C., I. Gestoso, F. P. Lima, E. Vázquez, L. A. Comeau, F. Gomes, R. Seabra & J. M. F. Babarro, 2016. Response of two mytilids to a heatwave: the complex interplay of physiology, behaviour and ecological interactions. PLoS ONE 11(10): e0164330.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pilson, M. E., 2013. An Introduction to the Chemistry of the Sea. Cambridge University Press, Cambridge.

    Google Scholar 

  50. Pörtner, H. O., 2008. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Marine Ecology Progress Series 373: 203–217.

    Article  Google Scholar 

  51. Pörtner, H. O. & A. P. Farrel, 2008. Physiology and climate change. Science 322: 690–692.

    Article  PubMed  Google Scholar 

  52. Pörtner, H. O., M. Langenbuch & B. Michaelidis, 2005. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. Journal of Geophysical Research 110: 1–15.

    Article  Google Scholar 

  53. Queirós, A. M., J. A. Fernandes, S. Faulwetter, J. Nunes, A. P. S. Rastrick, N. Mieszkowska, Y. Artioli, A. Yool, P. Calosi, C. Arvanitidis, H. S. Findlay, M. Barange, W. W. L. Cheung & S. Widdicombe, 2015. Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem. Global Change Biology 21: 130–143.

    Article  PubMed  Google Scholar 

  54. Range, P., D. Piló, R. Ben-Hamadou, M. A. Chícharo, D. Matias, S. Joaquim, A. P. Oliveira & L. Chícharo, 2012. Seawater acidification by CO2 in a coastal lagoon environment: effects on life history traits of juvenile mussels Mytilus galloprovincialis. Journal of Experimental Marine Biology and Ecology 424–425: 89–98.

    Article  Google Scholar 

  55. Range, P., M. A. Chícharo, R. Ben-Hamadou, D. Piló, M. J. Fernández-Reiriz, U. Labarta, M. G. Marin, M. Bressan, V. Matozzo, A. Chinellato, M. Munari, E. T. El Menif, M. Dellali & L. Chícharo, 2014. Impacts of CO2-induced seawater acidification on coastal Mediterranean bivalves and interactions with other climatic stressors. Regional Environmental Change 14(Suppl 1): S19–S30.

    Article  Google Scholar 

  56. Raven, J., K. Caldeira, H. Elderfield, O. Hoegh-Guldberg, P. S. Liss, U. Riebesell, J. Sheperd, C. Turley & A. Watson, 2005. Ocean acidification due to increasing atmospheric carbon dioxide. Royal Society, London: 57.

    Google Scholar 

  57. Ries, J. B., A. L. Cohen & D. C. McCorkle, 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37: 1131–1134.

    CAS  Article  Google Scholar 

  58. Scanes, E., L. M. Parker, W. A. ÓConnor, L. S. Stapp & P. M. Ross, 2017. Intertidal oysters reach their physiological limit in a future high-CO2 world. Journal of Experimental Biology 220: 765–774.

    Article  PubMed  Google Scholar 

  59. Sui, Y., M. Hu, X. Huang, Y. Wang & W. Lu, 2015. Anti-predatory responses of the thick shell mussel Mytilus coruscus exposed to seawater acidification and hypoxia. Marine Environmental Research 109: 159–167.

    CAS  Article  PubMed  Google Scholar 

  60. Waite, J. H., 2002. Adhesion à la Moule. Intregrative and Comparative Biology 42: 1172–1180.

    CAS  Article  Google Scholar 

  61. Walther, G.-R., 2010. Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2019–2024.

    Article  Google Scholar 

  62. Welladsen, H. M., P. C. Southgate & K. Heimann, 2010. The effects of exposure to near-future levels of ocean acidification on shell characteristics of Pinctada fucata (Bivalvia: Pteriidae). Molluscan Research 30(3): 125–130.

    Google Scholar 

  63. Zeebe, R. E. & D. Wolf-Gladrow, 2001. CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam.

    Google Scholar 

  64. Zhao, X., C. Guo, Y. Han, Z. Che, Y. Wang, X. Wang, X. Chai, H. Wu & G. Liu, 2017. Ocean acidification decreases mussel byssal attachment strength and induces molecular byssal responses. Marine Ecology Progress Series 565: 67–77.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Spanish government through the Ministerio de Economía y Competitividad (projects AGL2013-45945-R and CTM2016-76146-C3-2-R) and the Autonomic government Xunta de Galicia-FEDER (project GRC2013-004). We thank three anonymous reviewers who provided helpful comments on the original manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jose M. F. Babarro.

Additional information

Handling editor: Iacopo Bertocci

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babarro, J.M.F., Abad, M.J., Gestoso, I. et al. Susceptibility of two co-existing mytilid species to simulated predation under projected climate change conditions. Hydrobiologia 807, 247–261 (2018). https://doi.org/10.1007/s10750-017-3397-7

Download citation

Keywords

  • Mytilus galloprovincialis
  • Xenostrobus securis
  • Protective structure
  • Byssus attachment
  • Climate change