Hydrobiologia

, Volume 807, Issue 1, pp 247–261 | Cite as

Susceptibility of two co-existing mytilid species to simulated predation under projected climate change conditions

  • Jose M. F. Babarro
  • María José Abad
  • Ignacio Gestoso
  • Elsa Silva
  • Celia Olabarria
Primary Research Paper

Abstract

Properties of the shells and byssus filaments secreted by marine mussels are affected by environmental and biotic factors. In this study, we investigated the effects of pH and temperature on shell and byssus in artificially created monospecific and mixed aggregations of the indigenous mussel Mytilus galloprovincialis and the invasive mussel Xenostrobus securis. The variability in the response of the mussels was mainly explained by species-specific interactions derived from the type of aggregation. In the mixed groups, acidic conditions caused a decrease in byssus strength in M. galloprovincialis, but an increase in byssus strength in X. securis. Increased temperature positively affected shell strength in X. securis, but only in mixed aggregations. Interactive effects of acidification and warming were only detected in the organic matter of shells, the strength of which decreased in M. galloprovincialis in mixed aggregations. Although the invasive mussel may be able to take advantage of changed conditions by enhancing byssal attachment, the effects that acidification has on shells may make this species more vulnerable to some predators. The study findings provide some insight into the responses of protective and attachment structures of mussels to biotic and abiotic stressors, highlighting how species interactions may shape the future of mytilid populations.

Keywords

Mytilus galloprovincialis Xenostrobus securis Protective structure Byssus attachment Climate change 

Notes

Acknowledgements

This study was funded by the Spanish government through the Ministerio de Economía y Competitividad (projects AGL2013-45945-R and CTM2016-76146-C3-2-R) and the Autonomic government Xunta de Galicia-FEDER (project GRC2013-004). We thank three anonymous reviewers who provided helpful comments on the original manuscript.

References

  1. Addadi, L., D. Joester, F. Nudelman & S. Weiner, 2006. Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry - A European Journal 12: 980–987.CrossRefGoogle Scholar
  2. Amaral, V., H. N. Cabral & M. J. Bishop, 2012. Effects of estuarine acidification on predator–prey interactions. Marine Ecology Progress Series 445: 117–127.CrossRefGoogle Scholar
  3. Angert, A. L., S. L. LaDeau & R. S. Ostfeld, 2013. Climate change and species interactions: ways forward. Annals of the New York Academy of Sciences 1297: 1–7.CrossRefPubMedGoogle Scholar
  4. Babarro, J. M. F. & M. J. Abad, 2013. Co-existence of two mytilids in a heterogeneous environment: mortality, growth, and strength of shell and byssus attachment. Marine Ecology Progress Series 476: 115–128.CrossRefGoogle Scholar
  5. Babarro, J. M. F. & L. A. Comeau, 2014. Byssus attachment strength of two mytilids in mono-specific and mixed-species mussel beds. Biofouling: The Journal of Bioadhesion and Biofilm Research 30: 975–985.CrossRefGoogle Scholar
  6. Babarro, J. M. F. & M. J. Lassudrie, 2011. Ecophysiological responses of invasive and indigenous mytilids in the Ría de Vigo (NW Spain). Aquatic Living Resources 24: 303–315.CrossRefGoogle Scholar
  7. Barbosa, M., J. Pestana & A. M. V. M. Soares, 2014. Predation life history responses to increased temperature variability. PLoS ONE 9(9): e107971.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Borthagaray, A. I. & A. Carranza, 2007. Mussels as ecosystem engineers: their contribution to species richness in a rocky littoral community. Acta Oecologica 31: 243–250.CrossRefGoogle Scholar
  9. Chaparro, O. R., J. A. Montory, C. J. Segura & J. A. Pechenik, 2009. Effect of reduced pH on shells of brooded veligers in the estuarine bivalve Ostrea chilensis Philippi 1845. Journal of Experimental Marine Biology and Ecology 377: 107–112.CrossRefGoogle Scholar
  10. Conover, W. J., 2012. The rank transformation – an easy and intuitive way to connect many nonparametric methods to their parametric counterparts for seamless teaching introductory statistics courses. WIREs Computational Statistics 4: 432–438.CrossRefGoogle Scholar
  11. Dahlhoff, E., B. Buckley & B. Menge, 2001. Physiology of the rocky intertidal predator Nucella ostrina along an environmental stress gradient. Ecology 82: 2816–2829.CrossRefGoogle Scholar
  12. Doney, S. C., V. J. Fabry, R. A. Feely & J. A. Kleypas, 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1: 169–192.CrossRefPubMedGoogle Scholar
  13. Duarte, C., J. M. Navarro, K. Acuña, R. Torres, P. H. Manríquez, M. A. Lardies, C. A. Vargas, N. A. Lagos & V. Aguilera, 2014. Combined effects of temperature and ocean acidification on the juvenile individuals of the mussel Mytilus chilensis. Journal of Sea Research 85: 308–314.CrossRefGoogle Scholar
  14. Fabry, V. J., B. A. Seibel, R. A. Feely & J. C. Orr, 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65: 414–432.CrossRefGoogle Scholar
  15. Fernández-Reiriz, M. J., P. Range, X. A. Álvarez-Salgado, J. Espinosa & U. Labarta, 2012. Tolerance of juvenile Mytilus galloprovincialis to experimental seawater acidification. Marine Ecology Progress Series 454: 65–74.CrossRefGoogle Scholar
  16. Fitzer, S. C., L. Vittert, A. Bowman, N. A. Kamenos, V. R. Phoenix & M. Cusack, 2015. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection? Ecology and Evolution 5(21): 4875–4884.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fitzer, S. C., W. Zhu, K. E. Tanner, V. R. Phoenix, N. A. Kamenos & M. Cusack, 2017. Ocean acidification alters the material properties of Mytilus edulis shells. Journal of the Royal Society Interface 12: 20141227.CrossRefGoogle Scholar
  18. Fabricius, K. E., C. Langdon, S. Uthicke, C. Humphrey, S. Noonan, G. Déath, R. Okazaki, N. Muehllehner, M. S. Glas & J. M. Lough, 2011. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1: 165–169.CrossRefGoogle Scholar
  19. Gabriel, J. M., 1981. Differing resistance of various mollusc shell materials to simulated whelk attack. Journal of Zoology 194: 363–369.CrossRefGoogle Scholar
  20. Gazeau, F., C. Quiblier, J. M. Jansen, J.-P. Gattuso, J. J. Middleburg & C. H. R. Heip, 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters 34: L07603.CrossRefGoogle Scholar
  21. Gazeau, F., L. M. Parker, S. Comeau, J.-P. Gattuso, W. A. O’Connor, S. Martin, H.-O. Pörtner & P. M. Ross, 2013. Impacts of ocean acidification on marine shelled molluscs. Marine Biology 160: 2207–2245.CrossRefGoogle Scholar
  22. Gestoso, I., C. Olabarria & F. Arenas, 2012. The invasive mussel Xenostrobus securis along the Galician Rias Baixas (NW of Spain): status of invasion. Cahiers de Biologie Marine 53: 391–396.Google Scholar
  23. Gestoso, I., F. Arenas & C. Olabarria, 2015. Feeding behaviour of an intertidal snail: does past environmental stress affect predator choices and prey vulnerability? Journal of Sea Research 97: 66–74.CrossRefGoogle Scholar
  24. Gestoso, I., C. Olabarria & F. Arenas, 2016. Ecological interactions modulate responses of two intertidal mussel species to changes in temperature and pH. Journal of Experimental Marine Biology and Ecology 474: 116–125.CrossRefGoogle Scholar
  25. Hale, R., P. Calosi, L. McNeill, N. Mieszkowska & S. Widdicombe, 2011. Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120: 661–674.CrossRefGoogle Scholar
  26. Harrington, M. J. & J. H. Waite, 2007. Holdfast heroics: comparing the molecular and mechanical properties of Mytilus californianus byssal threads. Journal of Experimental Biology 210: 4307–4318.CrossRefPubMedGoogle Scholar
  27. Hiebenthal, C., E. E. R. Philipp, A. Eisenhauer & M. Wahl, 2013. Effects of seawater pCO2 and temperature on shell growth, shell stability, condition and cellular stress of Western Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.). Marine Biology 160: 2073–2087.CrossRefGoogle Scholar
  28. Hughes, L., 2012. Climate change impacts on species interactions: assessing the threat of cascading extinctions. In Hannath, L. (ed.), Saving a million species. Extinction risk from climate change. Island Press, Washington, DC.Google Scholar
  29. IPCC, 2013. Climate change 2013. The Physical Science Basis. Summary for Policymakers. Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  30. Ivanina, A. V., G. H. Dickinson, O. B. Matoo, R. Bagwe, A. Dickinson, E. Beniash & I. M. Sokolova, 2013. Interactive effects of elevated temperature and CO2 levels on energy metabolism and biomineralization of marine bivalves Crassostrea virginica and Mercenaria mercenaria. Comparative Biochemistry and Physiology, Part A 166: 101–111.CrossRefGoogle Scholar
  31. Jurgens, L. J. & B. Gaylord, 2016. Edge effects reverse facilitation by a widespread foundation species. Scientific Reports 6: 37573.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kimura, T. & H. Sekiguchi, 2009. Spatial and temporal patterns of abundance of the exotic mytilid Xenostrobus securis and the native mytilid Musculista senhousia in the Lake Hamana, Japan. Marine Biodiversity Records 2: e89.CrossRefGoogle Scholar
  33. Kroeker, K. J., F. Micheli, M. C. Gambi & T. R. Martz, 2011. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proceedings of the National Academy of Sciences of the United States of America 108: 14515–14520.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kroeker, K. J., R. L. Kordas, R. Crim, I. E. Hendriks, L. Ramajo, G. S. Singh, C. M. Duarte & J.-P. Gattuso, 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology 19: 1884–1896.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kroeker, K. J., B. Gaylord, T. M. Hill, J. D. Hosfelt, S. H. Miller & E. Sanford, 2014. The role of temperature in determining species´ vulnerability to ocean acidification: a case study using Mytilus galloprovincialis. PLoS ONE 9(7): e100353.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lamarck, J.-B. M., 1819. Histoire naturelle des animaux sans vertèbres. Tome sixième, 1re partie. Paris: vi + 343 pp.Google Scholar
  37. Li, S., C. Liu, J. Huang, Y. Liu, G. Zheng, L. Xie & R. Zhang, 2015. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis. Journal of Experimental Biology 218: 3623–3631.CrossRefPubMedGoogle Scholar
  38. Mackenzie, C. L., G. A. Ormondroyd, S. F. Curling, R. J. Ball, N. M. Whiteley & S. K. Malham, 2014. Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation. PLoS One 9: e86764.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Marin, F., G. Luquet, B. Marie & D. Medakovic, 2008. Molluscan shell proteins: primary structure, origin, and evolution. Current Topics in Developmental Biology 80: 209–276.CrossRefPubMedGoogle Scholar
  40. Meehl, G. A., T. F. Stocker, W. D. Collins, P. Friedlingstein, A. T. Gaye, J. M. Gregory, et al., 2007. Global climate projections. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis & K. B. Averyt (eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  41. Michaelidis, B., C. Ouzounis, A. Paleras & H. O. Pörtner, 2005. Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels. Marine Ecology Progress Series 293: 109–118.CrossRefGoogle Scholar
  42. Milano, S., G. Nehrke, A. D. Wanamaker Jr., I. Ballesta-Artero, T. Brey & B. R. Schöne, 2017. The effects of environment on Arctica islandica shell formation and architecture. Biogeosciences 14: 1577–1591.CrossRefGoogle Scholar
  43. Montoya, J. M. & D. Raffaelli, 2010. Climate change, biotic interactions and ecosystem services. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2013–2018.CrossRefGoogle Scholar
  44. Morse, J. W., A. Mucci & F. J. Millero, 1980. The solubility of calcite and aragonite in seawater of 35‰ salinity at 25 & #xB0;C and atmospheric pressure. Geochimica et Cosmochimica Acta 44: 85–94.CrossRefGoogle Scholar
  45. Morton, B., 2008. Attack responses of the southern Australian whelk, Lepsiella vinosa (Lamarck, 1822) (Gastropoda: Muricidae), to novel bivalve prey: an experimental approach. Biological Invasions 10: 1265–1275.CrossRefGoogle Scholar
  46. Nienhuis, S., A. R. Palmer & C. D. G. Harley, 2010. Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail. Proceedings of the Royal Society B: Biological Sciences 277(1693): 2553–2558.CrossRefPubMedPubMedCentralGoogle Scholar
  47. O’Donnell, M. J., M. N. George & E. Carrington, 2013. Mussel byssus attachment weakened by ocean acidification. Nature Climate Change 3: e587–e590.Google Scholar
  48. Olabarria, C., I. Gestoso, F. P. Lima, E. Vázquez, L. A. Comeau, F. Gomes, R. Seabra & J. M. F. Babarro, 2016. Response of two mytilids to a heatwave: the complex interplay of physiology, behaviour and ecological interactions. PLoS ONE 11(10): e0164330.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pilson, M. E., 2013. An Introduction to the Chemistry of the Sea. Cambridge University Press, Cambridge.Google Scholar
  50. Pörtner, H. O., 2008. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Marine Ecology Progress Series 373: 203–217.CrossRefGoogle Scholar
  51. Pörtner, H. O. & A. P. Farrel, 2008. Physiology and climate change. Science 322: 690–692.CrossRefPubMedGoogle Scholar
  52. Pörtner, H. O., M. Langenbuch & B. Michaelidis, 2005. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. Journal of Geophysical Research 110: 1–15.CrossRefGoogle Scholar
  53. Queirós, A. M., J. A. Fernandes, S. Faulwetter, J. Nunes, A. P. S. Rastrick, N. Mieszkowska, Y. Artioli, A. Yool, P. Calosi, C. Arvanitidis, H. S. Findlay, M. Barange, W. W. L. Cheung & S. Widdicombe, 2015. Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem. Global Change Biology 21: 130–143.CrossRefPubMedGoogle Scholar
  54. Range, P., D. Piló, R. Ben-Hamadou, M. A. Chícharo, D. Matias, S. Joaquim, A. P. Oliveira & L. Chícharo, 2012. Seawater acidification by CO2 in a coastal lagoon environment: effects on life history traits of juvenile mussels Mytilus galloprovincialis. Journal of Experimental Marine Biology and Ecology 424–425: 89–98.CrossRefGoogle Scholar
  55. Range, P., M. A. Chícharo, R. Ben-Hamadou, D. Piló, M. J. Fernández-Reiriz, U. Labarta, M. G. Marin, M. Bressan, V. Matozzo, A. Chinellato, M. Munari, E. T. El Menif, M. Dellali & L. Chícharo, 2014. Impacts of CO2-induced seawater acidification on coastal Mediterranean bivalves and interactions with other climatic stressors. Regional Environmental Change 14(Suppl 1): S19–S30.CrossRefGoogle Scholar
  56. Raven, J., K. Caldeira, H. Elderfield, O. Hoegh-Guldberg, P. S. Liss, U. Riebesell, J. Sheperd, C. Turley & A. Watson, 2005. Ocean acidification due to increasing atmospheric carbon dioxide. Royal Society, London: 57.Google Scholar
  57. Ries, J. B., A. L. Cohen & D. C. McCorkle, 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37: 1131–1134.CrossRefGoogle Scholar
  58. Scanes, E., L. M. Parker, W. A. ÓConnor, L. S. Stapp & P. M. Ross, 2017. Intertidal oysters reach their physiological limit in a future high-CO2 world. Journal of Experimental Biology 220: 765–774.CrossRefPubMedGoogle Scholar
  59. Sui, Y., M. Hu, X. Huang, Y. Wang & W. Lu, 2015. Anti-predatory responses of the thick shell mussel Mytilus coruscus exposed to seawater acidification and hypoxia. Marine Environmental Research 109: 159–167.CrossRefPubMedGoogle Scholar
  60. Waite, J. H., 2002. Adhesion à la Moule. Intregrative and Comparative Biology 42: 1172–1180.CrossRefGoogle Scholar
  61. Walther, G.-R., 2010. Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2019–2024.CrossRefGoogle Scholar
  62. Welladsen, H. M., P. C. Southgate & K. Heimann, 2010. The effects of exposure to near-future levels of ocean acidification on shell characteristics of Pinctada fucata (Bivalvia: Pteriidae). Molluscan Research 30(3): 125–130.Google Scholar
  63. Zeebe, R. E. & D. Wolf-Gladrow, 2001. CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam.Google Scholar
  64. Zhao, X., C. Guo, Y. Han, Z. Che, Y. Wang, X. Wang, X. Chai, H. Wu & G. Liu, 2017. Ocean acidification decreases mussel byssal attachment strength and induces molecular byssal responses. Marine Ecology Progress Series 565: 67–77.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Instituto de Investigaciones Marinas CSICVigoSpain
  2. 2.Grupo de Polímeros (CIT)FerrolSpain
  3. 3.MARE – Marine and Environmental Sciences CentreCaniçalPortugal
  4. 4.Departamento de Ecoloxía e Bioloxía AnimalUniversidade de VigoVigoSpain

Personalised recommendations