Effects of flood pulses on persistence and variability of pleuston communities in a tropical floodplain lake

Abstract

Large rivers in tropical regions can experience strong variations of abiotic factors owing to the occurrence of flood pulses. Both man-made and natural floods can cause pulses with varying intensity and duration. Here, we test the hypothesis that ostracod communities in the pleuston of floating plants are persistent during regular pulses and more variable during extreme floods. Ostracod communities were monitored in the Manezinho Backwater of the Upper Paraná River floodplain (Brazil) for 83 months (seven hydrologic cycles). Flood pulses directly influenced the abiotic variables, which in turn were correlated with the species composition and abundance of ostracods. Variability in the species composition differentiated only between the limnophase of cycle 4 (L4: 2009) and the subsequent extreme flood of cycle 5 (P5: 2009–2010). The longer duration and higher intensity of the extreme flood can increase the exchange of organisms through the aquatic connections between the lake and the river and can potentially trigger the hatching of dry-resistant eggs, increasing variability in ostracod species composition. The absence of significant differences in the species composition variability between the other succeeding periods shows that these communities are persistent and buffered to the effects of natural pulses of short durations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Agostinho, A. A., S. M. Thomaz, C. V. Minte-Veral & K. O. Winemiller, 2000. Biodiversity in the High Parana River Floodplain. In Gopal, B., W. J. Junk & J. A. Davis (eds), Biodiversity in Wetlands: Assessment, Junction and Conservation. Backhuys Publishers, Leiden: 89–118.

    Google Scholar 

  2. Anderson, M. J., K. E. Ellingsen & B. H. McArdle, 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9: 683–693.

    Article  PubMed  Google Scholar 

  3. Bêche, L. A. & V. H. Resh, 2007. Short-term climatic trends affect the temporal variability of macroinvertebrates in California “Mediterranean” streams. Freshwater Biology 52: 2317–2339.

    Article  Google Scholar 

  4. Bengtsson, J., S. R. Baillie & J. Lawton, 1997. Community variability increases with time. Oikos 78: 249–256.

    Article  Google Scholar 

  5. Bortolini, J. C., S. Train & L. C. Rodrigues, 2016. Extreme hydrological periods: effects on phytoplankton variability and persistence in a subtropical floodplain. Hydrobiologia 763: 223–236.

    Article  Google Scholar 

  6. Bozelli, R. L., S. M. Thomaz, A. A. Padial, P. M. Lopes & L. M. Bini, 2015. Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753: 233–241.

    CAS  Article  Google Scholar 

  7. Brown, L. E., A. M. Milner & D. M. Hannah, 2006. Stability and persistence of alpine stream macroinvertebrate communities and the role of physicochemical habitat variables. Hydrobiologia 560: 159–173.

    CAS  Article  Google Scholar 

  8. Bunn, S. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    Article  PubMed  Google Scholar 

  9. Campos, R., E. O. Conceição, M. B. O. Pinto, A. P. S. Bertocin, J. Higuti & K. Martens, 2017. Evaluation of quantitative sampling methods in pleuston: an example from ostracod communities. Limnologica 63: 36–41.

    Article  Google Scholar 

  10. Cera, J. C. & S. E. T. Ferraz, 2015. Variações climáticas na precipitação no sul do Brasil no clima presente e futuro. Revista Brasileira de Meteorologia 30: 81–88.

    Article  Google Scholar 

  11. Chesson, P. & N. Huntly, 1997. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. The American Naturalist 150: 519–553.

    CAS  Article  PubMed  Google Scholar 

  12. Collier, K. J., 2008. Temporal patterns in the stability, persistence and condition of stream macroinvertebrate communities: relationships with catchment land-use and regional climate. Freshwater Biology 53: 603–616.

    Article  Google Scholar 

  13. CPTEC, 2016. Centro de Previsão do tempo e estudos climáticos [available on internet at http://www.cptec.inpe.br/]. Accessed 24 Nov 2016.

  14. Dufrene, M. & P. Legendre, 1997. Species assemblages and indicator species – the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  15. Edvard, E. C., A. C. Petry, M. R. Russo, A. M. Santos, R. R. A. Rocha & R. A. Leimig, 2000. A planície de inundação do alto rio Paraná: Site 6 PELD/CNPq - Relatório anual 2000. Descrição dos Locais de Amostragem [available on internet at http://www.peld.uem.br/Relat2000/2_2_CompBioticoDesLocAmost.PDF]. Accessed 17 Oct 2015.

  16. Grimm, A. M. & R. G. Tedeschi, 2009. ENSO and extreme rainfall events in South America. Journal of Climate 22: 1589–1609.

    Article  Google Scholar 

  17. Higuti, J. & K. Martens, 2012a. On a new cypridopsine genus (Crustacea, Ostracoda, Cyprididae) from the Upper Paraná River Floodplain (Brazil). Zootaxa 38: 23–38.

    Google Scholar 

  18. Higuti, J. & K. Martens, 2012b. Description of a new genus and species of Candonopsini (Crustacea, Ostracoda, Candoninae) from the alluvial valley of the Upper Paraná River (Brazil, South America). European Journal of Taxonomy 33: 1–31.

    Google Scholar 

  19. Higuti, J. & K. Martens, 2014. Five new species of Candoninae (Crustacea, Ostracoda) from the alluvial valley of the Upper Paraná River (Brazil, South America). European Journal of Taxonomy 106: 1–36.

    Google Scholar 

  20. Higuti, J. & K. Martens, 2016. Invasive South American floating plants are a successful substrate for native Central African pleuston. Biological Invasions 18: 1191–1201.

    Article  Google Scholar 

  21. Higuti, J. L. F. M., F. M. Velho, F. A. Lansac-Tôha & K. Martens, 2007. Pleuston communities are buffered from regional flood river pulses: the example of ostracods in the Paraná River Floodplain, Brazil. Freshwater Biology 52: 1930–1943.

    Article  Google Scholar 

  22. Higuti, J., F. A. Lansac-Tôha, L. F. M. Velho, R. L. Pinto, L. C. G. Vieira & K. Martens, 2009. Composition and distribution of Darwinulidae (Crustacea, Ostracoda) in the alluvial valley of the Upper Paraná River, Brazil. Brazilian Journal of Biology 69: 253–262.

    CAS  Article  Google Scholar 

  23. Higuti, J. I., I. Schön, L. Audenaert & K. Martens, 2013. On the Strandesia obtusata/elliptica lineage (Ostracoda, Cyprididae) in the alluvial valley of the Upper Paraná River (Brazil), with the description of three new species. Crustaceana 86: 182–211.

    Article  Google Scholar 

  24. Junk, W. J. & R. E. Sparks, 1989. The flood pulse concept in river–floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  25. Junk, W. J. & K. M. Wantzen, 2007. Flood pulsing and the development and maintenance of biodiversity in floodplains. In Batzer, D. (ed.), Ecology of Freshwater and Estuarine Wetlands. University of California Press, Berkeley: 407–435.

    Chapter  Google Scholar 

  26. Kim, W., S. W. Yeh, J. H. Kim, J. S. Kug & M. Kwon, 2011. The unique 2009–2010 El Niño event: a fast phase transition of warm pool El Niño to la Niña. Geophysical Research Letters 38: 1–5.

    Google Scholar 

  27. Lee, T., W. R. Hobbs, J. K. Willis, D. Halkides, I. Fukumori, E. M. Armstrong, A. K. Hayashi, W. T. Liu, W. Patzert & O. Wang, 2010. Record warming in the South Pacific and western Antarctica associated with the strong central-Pacific El Niño in 2009–10. Geophysical Research Letters 37: 1–6.

    Google Scholar 

  28. Lourenço, L. S., I. M. Fernandes, J. Penha & L. A. F. Mateus, 2012. Persistence and stability of cichlid assemblages in neotropical floodplain lagoons. Environmental Biology of Fishes 93: 427–437.

    Article  Google Scholar 

  29. Martens, K. & F. Behen, 1994. A checklist of the non-marine ostracods (Crustacea, Ostracoda) from the inland waters of South America and adjacent islands. Travaux Scientifiques du Musée National d’Histoire Naturelle de Luxembourg, Luxembourg 22: 1–81.

    Google Scholar 

  30. Matsuda, J. T., F. A. Lansac-Tôha, K. Martens, L. F. M. Velho, R. P. Mormul & J. Higuti, 2015. Association of body size and behaviour of freshwater ostracods (Crustacea, Ostracoda) with aquatic macrophytes. Aquatic Ecology 49: 321–331.

    CAS  Article  Google Scholar 

  31. McCune, B. & M. J. Mefford, 1999. PC-ORD for Windows – Multivariate Analysis of Ecological Data. MjM Software, Gleneden Beach.

    Google Scholar 

  32. Meisch, C., 2000. Freshwater Ostracoda of Western and Central Europe. In Schwoerbel, J. & P. Zwick (eds), Süßwasserfauna von Mitteleuropa 8/3. Spektrum Akademischer Verlag, Berlin.

    Google Scholar 

  33. Mormul, R. P., S. M. Thomaz, J. Higuti & K. Martens, 2010. Ostracod (Crustacea) colonization of a native and a non-native macrophyte species of Hydrocharitaceae in the Upper Paraná Floodplain (Brazil): an experimental evaluation. Hydrobiologia 644: 185–193.

    Article  Google Scholar 

  34. Napiórkowski, P. & T. Napiórkowska, 2017. Limnophase versus potamophase: how hydrological connectivity affects the zooplankton community in an oxbow lake (Vistula River, Poland). Annales de Limnologie - International Journal of Limnology 53: 143–151.

    Article  Google Scholar 

  35. Neiff, J. J., 1990. Ideas para la interpretacion ecologica del Paraná. Interciência 15: 424–441.

    Google Scholar 

  36. Neiff, J. J. & M. Neiff, 2003. PULSO: software para análisis de fenómenos recurrentes [available on internet at http://www.neiff.com.ar]. Accessed 15 Feb 2016.

  37. Oberdorff, T., B. Hugueny & T. Vigneron, 2001. Is assemblage variability related to environmental variability? An answer for riverine fish. Oikos 93: 419–428.

    Article  Google Scholar 

  38. Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2016. Vegan: Community Ecology Package. R Package Version 2.4-1 [available on internet at https://cran.r-project.org/package=vegan]. Accessed 10 Feb 2016.

  39. R Development Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna [available on internet at http://www.r-project.org/]. Accessed 10 Feb 2016.

  40. Räsänen, T. A. & M. Kummu, 2013. Spatiotemporal influences of ENSO on precipitation and flood pulse in the Mekong River Basin. Journal of Hydrology 476: 154–168.

    Article  Google Scholar 

  41. Ratnam, J. V., S. K. Behera, Y. Masumoto, K. Takahashi & T. Yamagata, 2012. Anomalous climatic conditions associated with the El Niño Modoki during boreal winter of 2009. Climate Dynamics 39: 227–238.

    Article  Google Scholar 

  42. Robinson, C. T. & U. Uehlinger, 2006. Experimental floods cause ecosystem regime shift. Ecological Applications 18: 511–526.

    Article  Google Scholar 

  43. Rossetti, G. & K. Martens, 1998. Taxonomic revision of the Recent and Holocene representatives of the family Darwinulidae (Crustacea, Ostracoda), with a description of three new genera. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Biologie 68: 55–110.

    Google Scholar 

  44. Sarkar, D., 2008. Lattice: Multivariate Data Visualization with R. Springer, New York.

    Book  Google Scholar 

  45. Scarsbrook, M. R., 2002. Persistence and stability of lotic invertebrate communities in New Zealand. Freshwater Biology 47: 417–431.

    Article  Google Scholar 

  46. Schneck, F., A. Schwarzbold, S. C. Rodrigues & A. S. Melo, 2011. Environmental variability drives phytoplankton assemblage persistence in a subtropical reservoir. Austral Ecology 36: 839–848.

    Article  Google Scholar 

  47. Seager, R., Y. Kushnir, J. Nakamura, M. Ting & N. Naik, 2010. Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophysical Research Letters 37: 1–6.

    Article  Google Scholar 

  48. Simões, N. R., F. A. Lansac-Tôha & C. C. Bonecker, 2013. Drought disturbances increase temporal variability of zooplankton community structure in floodplains. International Review of Hydrobiology 98: 24–33.

    Article  Google Scholar 

  49. Simpson, G. L., 2016. permute: Functions for Generating Restricted Permutations of Data. R package version 0.9-4 [available on internet at https://cran.r-project.org/package=permute]. Accessed 10 Feb 2016.

  50. Smith, A. J., D. J. Horne, K. Martens & I. Schön, 2015. Class Ostracoda. In Thorpe & Covich’s Freshwater Invertebrates. Elsevier, New York: 757–780.

  51. Souza Filho, E. E., 2009. Evaluation of the Upper Paraná River discharge controlled by reservoirs. Brazilian Journal of Biology 69: 707–716.

    CAS  Article  Google Scholar 

  52. StatSoft, Inc., 2005. STATISTICA (Data Analysis Software System), Version 7.1. www.Statsoft.com.

  53. Thomaz, S. M., L. M. Bini & T. A. Pagioro, 2003. Macrófitas aquáticas em Itaipu: ecologia e perspectivas para o manejo. In Thomaz, S. M. & L. M. Bini (eds), Ecologia e manejo de macrófitas aquáticas. EDUEM, Maringá: 319–341.

    Google Scholar 

  54. Thomaz, S. M., T. A. Pagioro, L. M. Bini, M. C. Roberto & R. R. A. Rocha, 2004. Limnological characterization of the aquatic environments and the influence of hydrometric levels. In Thomaz, S. M., A. A. Agostinho & N. S. Hahn (eds), The Upper Paraná River and Its Floodplain: Physical Aspects, Ecology and Conservation. Backhuys Publishers, Leiden: 75–102.

    Google Scholar 

  55. Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river–floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  56. Ward, J. V., K. Tockner & F. Schiemer, 1999. Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers: Research and Management 15: 125–139.

    Article  Google Scholar 

  57. Ward, P. J., W. Beets, L. M. Bouwer, J. C. J. H. Aerts & H. Renssen, 2010. Sensitivity of river discharge to ENSO. Geophysical Research Letters 37: 1–6.

    Article  Google Scholar 

  58. Ward, P. J., B. Jongman, M. Kummu, M. D. Dettinger, F. C. Sperna Weiland & H. C. Winsemius, 2014. Strong influence of El Nino Southern Oscillation on flood risk around the world. Proceedings of the National Academy of Sciences of USA 111: 15659–15664.

    CAS  Article  Google Scholar 

  59. Yu, J. Y. & S. T. Kim, 2013. Identifying the types of major El Niño events since 1870. International Journal of Climatology 33: 2105–2112.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Roger Paulo Mormul and Dr. Luiz Carlos Gomes for assistance with the statistical analyses and Jaime Luiz Lopes Pereira for help with the production of the map. We thank the Nucleus of Research in Limnology, Ichthyology and Aquaculture (Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Nupélia) and the Post-graduate Program in the Ecology of Continental Aquatic Environments (Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, PEA) of the State University of Maringá (Universidade Estadual de Maringá, UEM) for the logistic support. This Research forms part of Projects supported by National Council for Scientific and Technological Development (CNPq Nr 472434/03-9), through the Long-Term Ecological Research (LTER) Program, and the SETI/Fundação Araucária/MCT/CNPq (Nr 232/10). EOC and RC would like to thank CNPq and the Coordination of Improvement of Higher Education Personnel (CAPES) for granting their Master’s Scholarships, respectively. Dr. Tadeusz Namiotko (Gdansk, Poland) and Dr. Thijs Van der Meeren (Ghent, Belgium) suggested important improvements. The Universidade Estadual de Maringá (UEM, Maringá) and the Royal Belgian Institute of natural Sciences (RBINS, Brussels) have a bilateral Memorandum of Understanding regarding collaborative Scientific Research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Koen Martens.

Additional information

Handling editor: Luigi Naselli-Flores

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 258 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Conceição, E.O., Higuti, J., Campos, R. et al. Effects of flood pulses on persistence and variability of pleuston communities in a tropical floodplain lake. Hydrobiologia 807, 175–188 (2018). https://doi.org/10.1007/s10750-017-3392-z

Download citation

Keywords

  • Ostracoda
  • Microcrustaceans
  • Aquatic macrophytes
  • El Niño
  • Extreme flood events