Advertisement

Hydrobiologia

, Volume 807, Issue 1, pp 131–144 | Cite as

Effects of plant species on stream bacterial communities via leachate from leaf litter

  • Adam S. Wymore
  • Elena Salpas
  • Giorgio Casaburi
  • Cindy M. Liu
  • Lance B. Price
  • Bruce A. Hungate
  • William H. McDowell
  • Jane C. Marks
Primary Research Paper

Abstract

Leaf litter provides an important resource to forested stream ecosystems. During leaf fall a significant amount of dissolved organic carbon (DOC) enters streams as leaf leachate. We compared the effects of plant species and leaf leachate bioavailability on the composition of stream bacterial communities and rates of DOC decomposition. We used four common riparian tree species that varied in foliar chemistry, leachate optical properties, and litter decomposition rate. We used laboratory microcosms from two streams and amended with a standard concentration of DOC derived from leaf leachate of the four tree species. After 24 h, we measured rates of DOC biodegradation and determined the composition of the bacterial communities via bar-coded pyrosequencing of the 16S rRNA gene. The composition, diversity, and abundance of the bacterial community differed significantly among plant species from both streams. The phylogenetic distance of the different bacterial communities correlated with species-specific leachate optical properties and rates of DOC biodegradation. Highest rates of DOC decomposition were associated with high tannin and lignin leaf types. Results demonstrate that riparian plant species strongly influences stream bacterial communities via their leachate suggesting that alterations to the presence or abundance of riparian plant taxa may influence these communities and associated ecosystem processes.

Keywords

Dissolved organic carbon Leaf litter Streams 16S rRNA Fluorescence spectroscopy 

Notes

Acknowledgements

This Project benefited from discussions with E. Schwartz. Assistance from B. Moan, J. Potter, and T. Contente is appreciated. Funding came from the National Science Foundation (DEB-1120343 and DEB-1119843). ASW was funded by the National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT) and GK-12 Programs.

Supplementary material

10750_2017_3386_MOESM1_ESM.pdf (360 kb)
Supplementary material 1 (PDF 359 kb)
10750_2017_3386_MOESM2_ESM.pdf (168 kb)
Supplementary material 2 (PDF 167 kb)
10750_2017_3386_MOESM3_ESM.pdf (166 kb)
Supplementary material 3 (PDF 166 kb)
10750_2017_3386_MOESM4_ESM.pdf (128 kb)
Supplementary material 4 (PDF 127 kb)

References

  1. Allan, C. D. & D. D. Breshears, 1998. Drought induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proceedings of the National Academy of Science of USA 95: 14839–14842.CrossRefGoogle Scholar
  2. Baker, A., & R. Inverarity, 2004. Protein-like fluorescence intensity as a possible tool for determining river water quality. Hydrological Processes 18: 2927–2945.CrossRefGoogle Scholar
  3. Balcarczyk, K. L., J. B. Jones Jr., R. Jaffé & N. Maie, 2009. Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochemistry 94: 255–270.CrossRefGoogle Scholar
  4. Besemer, K., H. Peter, J. B. Logue, S. Langenheder, E. S. Lindström, L. J. Tranvik & T. J. Battin, 2012. Unraveling assembly of stream biofilm communities. The ISME Journal 6: 1459–1468.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, et al., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. doi: 10.1038/nmeth.f.303.PubMedPubMedCentralGoogle Scholar
  6. Cleveland, C. C., D. R. Nemergut, S. K. Schmidt & A. R. Townsend, 2007. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82: 229–240.CrossRefGoogle Scholar
  7. Coble, P. G. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry 51: 325–346.CrossRefGoogle Scholar
  8. Cole, J. R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris, A. S. Kulam-Syed-Mohideen, D. M. McGarrell, T. Marsh, G. M. Garrity & J. M. Tiedje, 2009. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research 37(Supplement 1): D141–D145.CrossRefPubMedGoogle Scholar
  9. Cory, R. M., M. P. Miller, D. M. McKnight, J. J. Guerard & P. L. Miller, 2010. Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnology and Oceanography: Methods 8: 67–78.Google Scholar
  10. Cory, R. M., E. W. Boyer & D. M. McKnight, 2011. Spectral methods to advance understanding of dissolved organic carbon dynamics in forested catchments. In Carlyle-Moses, D., T. Tanaka & D. F. Levia (eds), Forest Hydrology and Biogeochemistry. Springer, New York: 117–135.CrossRefGoogle Scholar
  11. Docherty, K. M., K. C. Young, P. A. Maurice & S. D. Bridgham, 2006. Dissolved organic matter concentration and quality influences upon structure and function of freshwater microbial communities. Microbial Ecology 52: 378–388.CrossRefPubMedGoogle Scholar
  12. Edgar, R. C., B. J. Haas, J. C. Clemente, C. Quince & R. Knight, 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194–2200.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Eilers, K. G., C. L. Lauber, R. Knight & N. Fierer, 2010. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds in soil. Soil Biology and Biochemistry 42: 896–903.CrossRefGoogle Scholar
  14. Gessner, M. O. & E. Chauvet, 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75: 1807–1817.CrossRefGoogle Scholar
  15. Gosz, J. R., G. E. Likens & F. H. Bormann, 1972. Nutrient content of litter fall on the Hubbard Brook Experimental Forest, New Hampshire. Ecology 53: 769–784.CrossRefGoogle Scholar
  16. Guenet, B., M. Danger, L. Abbadie & G. Lacroix, 2010. Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91: 2850–2861.CrossRefPubMedGoogle Scholar
  17. Guenet, B., M. Danger, L. Harrault, B. Allard, M. Jauset-Alcala, G. Bardoux, D. Benset, L. Abbadie & G. Lacroix, 2014. Fast mineralization of land-born C in inland waters: first experimental evidence of aquatic priming effect. Hydrobiologia 721: 35–44.CrossRefGoogle Scholar
  18. Gunnarsson, T., P. Sundin & A. Tunlid, 1988. Importance of leaf litter fragmentation for bacterial growth. Oikos 52: 303–308.CrossRefGoogle Scholar
  19. Harrop, B. L., J. C. Marks & M. E. Watwood, 2009. Early bacterial and fungal colonization of leaf litter in Fossil Creek, Arizona. Journal of the North American Benthological Society 28: 383–396.CrossRefGoogle Scholar
  20. Hooper, D. U., F. S. Chapin III, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setälä, A. J. Symstad, J. Vandermeer & D. A. Wardle, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.CrossRefGoogle Scholar
  21. Hooper, D. U., E. C. Adair, B. J. Cardinale, J. E. K. Byrnes, B. A. Hungate, K. L. Matulich, A. Gonzalez, J. Emmett Duffy, L. Gamfeldt & M. I. O’Connor, 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486: 105–108.PubMedGoogle Scholar
  22. Jaffé, R., J. N. Boyer, X. Lu, N. Maie, C. Yang, N. M. Scully & S. Mock, 2004. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis. Marine Chemistry 84: 195–210.CrossRefGoogle Scholar
  23. Johnson, M. S., E. G. Couto, M. Abdo & J. Lehmann, 2011. Fluorescence index as an indicator of dissolved organic carbon in hydrologic flowpaths of forested tropical watersheds. Biogeochemistry 105: 149–157.CrossRefGoogle Scholar
  24. Kominoski, J. S., T. J. Hoellein, J. J. Kelly & C. M. Pringle, 2009. Does mixing leaf litter of different qualities alter stream microbial diversity and functioning on individual litter species? Oikos 118: 457–463.CrossRefGoogle Scholar
  25. Kuserk, F. T., L. A. Kaplan & T. L. Bott, 1984. In situ measures of dissolved organic carbon flux in a rural stream. Canadian Journal of Fisheries and Aquatic Science 41: 964–973.CrossRefGoogle Scholar
  26. Leenheer, J. A. & J.-P. Croué, 2003. Characterizing aquatic dissolved organic matter. Environmental Science and Technology 37: 18A–26A.CrossRefPubMedGoogle Scholar
  27. Leff, J. W., D. R. Nemergut, A. S. Grandy, S. P. O’Neill, K. Wickings, A. R. Townsend & C. C. Cleveland, 2012. The effects of soil bacterial communities structure on decomposition in a tropical rain forest. Ecosystems 15: 284–298.CrossRefGoogle Scholar
  28. LeRoy, C. J. & J. C. Marks, 2006. Litter quality, stream characteristics, and litter diversity influence decomposition rates and macroinvertebrates. Freshwater Biology 51: 605–617.CrossRefGoogle Scholar
  29. LeRoy, C. J., T. G. Whitham, S. C. Wooley & J. C. Marks, 2007. Within-species variation in foliar chemistry influences leaf-litter decomposition in a Utah river. Journal of the North American Benthological Society 26: 426–438.CrossRefGoogle Scholar
  30. Liu, C. M., M. Aziz, S. Kachur, P. Hsueh, Y. Huang, P. Keim & L. B. Price, 2012. BactQuant: an enhanced broad-coverage bacterial quantitative real-time PCR assay. BMC Microbiology. doi: 10.1186/1471-2180-12-56.Google Scholar
  31. Lozupone, C. A. & R. Knight, 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71: 8228–8235.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lozupone, C. A., M. Hamady, S. T. Kelley & R. Knight, 2007. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Applied and Environmental Microbiology 73: 1576–1585.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lozupone, C. A., M. E. Lladser, D. Knights, J. Stombaugh & R. Knight, 2010. UniFrac: an effective distance metric for microbial community composition. The ISME Journal 5: 169–172.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Magill, A. H. & J. D. Aber, 2000. Dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition. Soil Biology and Biochemistry 32: 603–613.CrossRefGoogle Scholar
  35. Marks, J. C., G. A. Haden, B. L. Harrop, E. G. Reese, J. L. Keams, M. E. Watwood & T. G. Whitham, 2009. Genetic and environmental controls of microbial communities on leaf litter in streams. Freshwater Biology 54: 2616–2627.CrossRefGoogle Scholar
  36. McDowell, W. H. & S. G. Fisher, 1976. Autumnal processing of dissolved organic matter in a small woodland stream ecosystem. Ecology 57: 561–569.CrossRefGoogle Scholar
  37. McDowell, W. H. & G. E. Likens, 1988. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecological Monographs 58: 177–195.CrossRefGoogle Scholar
  38. McKnight, D. M., E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe & D. T. Anderson, 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography 46: 38–48.CrossRefGoogle Scholar
  39. Meyer, J. L., R. T. Edwards & R. Risley, 1987. Bacterial growth on dissolved organic carbon from blackwater river. Microbial Ecology 13: 13–29.CrossRefPubMedGoogle Scholar
  40. Meyer, J. L., J. B. Wallace & S. L. Eggert, 1998. Leaf litter as a source of dissolved organic carbon. Ecosystems 1: 240–249.CrossRefGoogle Scholar
  41. Murphy, K. R., K. D. Butler, R. G. M. Spencer, C. A. Stedmon, J. R. Boehme & G. R. Aiken, 2010. Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environmental Science and Technology 4: 9405–9412.CrossRefGoogle Scholar
  42. Neff, J. C. & G. P. Asner, 2001. Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4: 29–48.CrossRefGoogle Scholar
  43. Park, J.-H., K. Kalbitz & E. Matzner, 2002. Resource control of the production on dissolved organic carbon and nitrogen in a deciduous forest floor. Soil Biology and Biochemistry 34: 813–822.CrossRefGoogle Scholar
  44. Qualls, R. G. & B. L. Haines, 1992. Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Science Society of America Journal 56: 578–586.CrossRefGoogle Scholar
  45. Redford, A. J., R. M. Bowers, R. Knight, Y. Linhart & N. Fierer, 2010. The ecology of the phyllosphere: geographic and phylogenic variability in the distribution of bacteria on tree leaves. Environmental Microbiology 12: 2885–2893.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Schlief, J. & M. Mutz, 2007. Response of leaf associated microbial communities to elevated leachate DOC: a microcosm study. International Review of Hydrobiology 92: 146–155.CrossRefGoogle Scholar
  47. Schweitzer, J. A., M. D. Madritch, J. K. Bailey, C. J. LeRoy, D. G. Fisher, B. J. Rehill, A. E. Hagerman, S. C. Wooley, S. C. Hart & T. G. Whitham, 2008. From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in Populus model system. Ecosystems 11: 1005–1020.CrossRefGoogle Scholar
  48. Shannon, C. E., 1948. A mathematical theory of communication. The Bell System Technical Journal 27: 379–656.CrossRefGoogle Scholar
  49. Spellerberg, I. F. & P. J. Fedor, 2003. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon-Wiener’ Index. Global Ecology and Biogeography 12: 177–179.CrossRefGoogle Scholar
  50. SPSS. IBM Corporation. Released, 2011. IBM SPSS Statistics for Windows, Version 19.0. IBM Corporation, Armonk.Google Scholar
  51. Stedmon, C. A., S. Markager & R. Bro, 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry 82: 239–254.CrossRefGoogle Scholar
  52. Strauss, E. A. & G. A. Lamberti, 2002. Effect of organic carbon quality on microbial decomposition of DOC and nitrification rates in stream sediments. Freshwater Biology 47: 65–74.CrossRefGoogle Scholar
  53. Tilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie & E. Siemann, 1997. The influence of functional diversity and composition on ecosystems processes. Science 277: 1300–1302.CrossRefGoogle Scholar
  54. Van Horn, D. J., R. L. Sinsabaugh, C. D. Takacs-Vesbach, K. R. Mitchell & C. N. Dahm, 2011. Response of heterotrophic stream biofilm communities to a gradient of resources. Aquatic Microbial Ecology 64: 149–161.CrossRefGoogle Scholar
  55. Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecological Systematics 17: 567–594.CrossRefGoogle Scholar
  56. Weishaar, J. L., G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii & K. Mopper, 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science and Technology 37: 4702–4708.CrossRefPubMedGoogle Scholar
  57. Wickland, K. P., J. C. Neff & G. R. Aiken, 2007. Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability. Ecosystems 10: 1323–1340.CrossRefGoogle Scholar
  58. Wickland, K. P., G. R. Aiken, K. Butler, M. M. Dornblaser, R. G. M. Spencer & R. G. Striegl, 2012. Biodegradability of dissolved organic carbon in the Yukon River and its tributaries: seasonality and importance of inorganic nitrogen. Global Biogeochemical Cycles 26: GB0E03.CrossRefGoogle Scholar
  59. Wilhelm, L., G. A. Singer, C. Fasching, T. J. Battin & K. Besemer, 2013. Microbial biodiversity in glacier-fed streams. The ISME Journal 7: 1651–1660.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wu, L., C. B. Blackwood & L. G. Leff, 2009. Effect of single species and mixed-species leaf leachate on bacterial communities in biofilms. Hydrobiologia 636: 65–76.CrossRefGoogle Scholar
  61. Wymore, A. S., Z. G. Compson, C. M. Liu, L. B. Price, T. G. Whitham, P. Keim & J. C. Marks, 2013. Contrasting rRNA gene abundance patterns for aquatic fungi and bacteria in response to leaf-litter chemistry. Freshwater Science 32: 663–672.CrossRefGoogle Scholar
  62. Wymore, A. S., Z. G. Compson, W. H. McDowell, J. D. Potter, B. A. Hungate, T. G. Whitham & J. C. Marks, 2015. Leaf litter dissolved organic carbon is distinct in composition and bioavailability to stream heterotrophs. Freshwater Science 34: 857–866.CrossRefGoogle Scholar
  63. Wymore, A. S., C. M. Liu, B. A. Hungate, E. Schwartz, L. B. Price, T. G. Whitham & J. C. Marks, 2016. The influence of time and plant species on the composition of the decomposing bacterial community in a stream ecosystem. Microbial Ecology 71: 825–834.CrossRefPubMedGoogle Scholar
  64. Yamashita, Y., B. D. Kloeppel, J. Knoepp, G. L. Zausen & R. Jaffé, 2011. Effects of watershed history on dissolved organic matter characteristics in headwater streams. Ecosystems 14: 1110–1122.CrossRefGoogle Scholar
  65. Young, K. C., K. M. Docherty, P. A. Maurice & S. D. Bridgham, 2005. Degradation of surface-water dissolved organic matter: influences of DOM chemical characteristics and microbial populations. Hydrobiologia 539: 1–11.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biological SciencesNorthern Arizona UniversityFlagstaffUSA
  2. 2.CEINGE - Biotecnologie Avanzate, S.c. a.r.l.NaplesItaly
  3. 3.Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversita di Napoli Federico IINaplesItaly
  4. 4.Translational Genomics Research InstituteFlagstaffUSA
  5. 5.School of Public Health and Health ServicesGeorge Washington UniversityWashingtonUSA
  6. 6.Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffUSA
  7. 7.Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamUSA

Personalised recommendations