Skip to main content

Advertisement

Log in

Twenty-three-year timeline of ecological stable states and regime shifts in upper Amazon oxbow lakes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Regime shifts in shallow lakes are often associated with anthropogenic impacts, such as land-use change, non-point source nutrient loading, and overfishing. These shifts have mostly been examined in lakes in temperate and boreal regions and within anthropogenically disturbed basins. Here, it is demonstrated that tropical floodplain lakes in a region of virtually no human disturbance naturally undergo frequent regime shifts. We demonstrate this using satellite imagery to provide a 23-year time series of 22-oxbow lakes or “cochas” along 300 km of the Manu River in SE Perú. In any year, a majority of these lakes is in a macrophyte-free, phytoplankton-dominated state. However, over the 23 years covered by images, roughly a third of the lakes experienced abrupt shifts to a floating macrophyte state. Macrophyte cover persisted for ≤ 3 year. Analysis of water level fluctuations sampled on a subset of the lakes for 1 year suggests that lake isolation from streams and the main river facilitates regime shifts. Multiple forcing factors, both internal and external to the lakes themselves, could drive the observed regime shifts, but insufficient data exist from this remote region to identify the key processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brönmark, C., J. Brodersen, B. B. Chapman, A. Nicolle, P. A. Nilsson, C. Skov & L.-A. Hansson, 2010. Regime shifts in shallow lakes: the importance of seasonal fish migration. Hydrobiologia 646: 91–100.

    Article  Google Scholar 

  • Camargo, A. F. M. & F. A. Esteves, 1995. Influence of water level variation on fertilization of an oxbow lake of Rio Mogi-Guaçu, state of São Paulo, Brazil. Hydrobiologia 299: 185–193.

    Article  CAS  Google Scholar 

  • Carpenter, S., 2003. Regime Shifts in Lake Ecosystems: Pattern and Variation. International Ecology Institute, Oldendorf/Luhe.

    Google Scholar 

  • Carpenter, S. R. & W. A. Brock, 2006. Rising variance: a leading indicator of ecological transition. Ecology Letters 9: 311–318.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. Elser, D. M. Lodge, D. Kretchmer, X. He & C. N. von Ende, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.

    Article  Google Scholar 

  • Chander, G., B. L. Markham & D. L. Helder, 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM + , and EO-1 ALI sensors. Remote Sensing of Environment 113: 893–903.

    Article  Google Scholar 

  • Daskalov, G. M., A. N. Grishin, S. Rodionov & V. Mihneva, 2007. Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proceedings of the National Academy of Sciences 104: 10518–10523.

    Article  CAS  Google Scholar 

  • Davenport, L.C., 2008. Behavior and ecology of the giant otter (Pteroneura brasiliensis) in oxbow lakes of the Manu Biosphere Reserve, Perú. PhD dissertation. University of North Carolina, Chapel Hill, NC.

  • Dent, C. L., G. S. Cumming & S. R. Carpenter, 2002. Multiple states in river and lake ecosystems. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 357: 635–645.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Tezanos Pinto, P. & I. O’Farrell, 2014. Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia 740: 13–24.

    Article  Google Scholar 

  • Fantin-Cruz, I., S. M. Loverde-Oliveira & P. Girard, 2008. Caracterizaçao morfométrica e suas implicacoes na limnologia de lagoas do Pantanal Norte. Acta Scientiarum Biological Sciences 30: 133–140.

    Article  Google Scholar 

  • Guttal, V. & C. Jayaprakash, 2008. Changing skewness: an early warning signal of regime shifts in ecosystems. Ecology Letters 11: 450–460.

    Article  PubMed  Google Scholar 

  • Hilt, S., J. Köhler, H.-P. Kozerski, E. H. van Nes & M. Scheffer, 2011. Abrupt regime shifts in space and time along rivers and connected lake systems. Oikos 120: 766–775.

    Article  Google Scholar 

  • Izaguirre, I., I. O’Farrell, F. Unrein, R. Sinistro, M. dos Santos Afonso & G. Tell, 2004. Algal assemblages across a wetland, from a shallow lake to relictual oxbow lakes (Lower Paraná River, South America). Hydrobiologia 511: 25–36.

    Article  CAS  Google Scholar 

  • Lacerot, G., C. Kruk, M. Lürling & M. Scheffer, 2013. The role of subtropical zooplankton as grazers of phytoplankton under different predation levels. Freshwater Biology 58: 494–503.

    Article  Google Scholar 

  • Loverde-Oliveira, S. M., V. L. Moraes Huszar, N. Mazzeo & M. Scheffer, 2009. Hydrology-driven regime shifts in a shallow tropical lake. Ecosystems 12: 807–819.

    Article  Google Scholar 

  • Ludwig, D., D. D. Jones & C. S. Holling, 1978. Qualitative analysis of insect outbreak systems: the spruce budworm and forest. Journal of Animal Ecology 47: 315–322.

    Article  Google Scholar 

  • Marshall, B. E. & F. J. R. Junor, 1981. Decline of Salvinia molesta on Lake Kariba. Hydrobiologia 83: 477–484.

    Article  Google Scholar 

  • Meerhoff, M., C. Iglesias, F. Teixeira de Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppsen, 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  • Melack, J. M. & B. R. Forsberg, 2001. Biogeochemistry of Amazon floodplain lakes and associated wetlands. In McClain, M. E., R. L. Victoria & J. E. Richey (eds), The Biogeochemistry of the Amazon Basin. Oxford University Press, Oxford.

    Google Scholar 

  • Mormul, R. P., S. M. Tomaz, A. A. Agostinho, C. C. Bonecker & N. Mazzeo, 2012. Migratory benthic fishes may induce regime shifts in a tropical floodplain pond. Freshwater Biology 57: 1592–1602.

    Article  Google Scholar 

  • O’Farrell, I., I. Izaguirre, G. Chaparro, F. Unrein, R. Sinistro, H. Pizarro, P. Rodríguez, P. de Tezanos Pinto, R. Lombardo & G. Tell, 2011. Water level as the main driver of the alternation between a free-floating plant and a phytoplankton dominated state: a long-term study in a floodplain lake. Aquatic Sciences 73: 275–287.

    Article  Google Scholar 

  • Osorio, D., J. Terborgh, A. Alvarez, H. Ortega, R. Quispe, V. Chipollini & L. C. Davenport, 2011. Lateral migration of fish between an oxbow lake and an Amazonian headwater river. Ecology of Freshwater Fish 20: 619–627.

    Article  Google Scholar 

  • Peñuelas, J., J. A. Gamon, K. L. Griffin & C. B. Field, 1993. Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sensing of Environment 46: 110–118.

    Article  Google Scholar 

  • Richey, J. E., L. A. K. Mertes, T. Dunne, R. L. Victoria, B. R. Forsberg, A. C. N. S. Tancredi & E. Oliveira, 1989. Sources and routing of the Amazon River flood wave. Global Biogeochemical Cycles 3: 191–204.

    Article  Google Scholar 

  • Rouse, J.W., Jr., R.H. Haas, J.A. Schell & D.W. Deering, 1973. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Progress Report RSC 1978-1, Remote Sensing Center, Texas A&M University, College Station (NTIS No. E73-106393).

  • Scheffer, M., 2004. Ecology of Shallow Lakes. Princeton University Press, Princeton, NJ.

    Book  Google Scholar 

  • Scheffer, M. & E. Jeppesen, 2007. Regime shifts in shallow lakes. Ecosystems 10: 1–3.

    Article  Google Scholar 

  • Scheffer, M. & E. H. van Ness, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 2007(584): 455–466.

    Article  Google Scholar 

  • Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer, M., S. Szabó, A. Gragnani, E. H. van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. M. M. Roijackers & R. J. M. Franken, 2003. Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences 100: 4040–4045.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. R. Carpenter, T. M. Lenton, J. Bascompte, W. Brock, V. Dakos, J. V. de Koppel, I. A. van de Leemput, S. A. Levin, E. H. van Nes, M. Pascual & J. Vandermeer, 2012. Anticipating critical transitions. Science 338: 344–348.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, B., E. R. Cunha, M. Marchese & M. Thomaz, 2015. Explanatory variables associated with diversity and composition of aquatic macrophytes in a large subtropical river floodplain. Aquatic Botany 121: 67–75.

    Article  Google Scholar 

  • Schooler, S. S., B. Salau, M. H. Julien & A. R. Ives, 2011. Alternative stable states explain unpredictable biological control of Salvinia molesta in Kakadu. Nature 470: 86–89.

    Article  CAS  PubMed  Google Scholar 

  • Sioli, H., 1984. The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and its Basin. W. Junk, Dordrecht.

    Book  Google Scholar 

  • Song, C., C. E. Woodcock, K. C. Seto, M. P. Lenney & S. A. Macomber, 2001. Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Remote Sensing of Environment 75: 230–244.

    Article  Google Scholar 

  • Tejerina-Garro, F. L., R. Fortin & M. A. Rodriguez, 1998. Fish community structure in relation to environmental variation in floodplain lakes of the Araguaia River, Amazon Basin. Environmental Biology of Fishes 51: 399–410.

    Article  Google Scholar 

  • Tundisi, J. G., 1983. A review of basic ecological processes interacting with production and standing-stock of phytoplankton in lakes and reservoirs in Brazil. Hydrobiologia 100: 223–243.

    Article  Google Scholar 

  • van Geest, G. J., H. Coops, R. M. M. Roijackers, A. D. Buijse & M. Scheffer, 2005. Succession of aquatic vegetation driven by reduced water-level fluctuations in floodplain lakes. Journal of Applied Ecology 42: 251–260.

    Article  Google Scholar 

  • Wanzten, K. M., W. J. Junk & K.-O. Rothhaupt, 2008. An extension of the floodpulse concept (FPC) for lakes. Hydrobiologia 613: 151–170.

    Article  Google Scholar 

  • Zeeman, E. C., 1977. Catastrophe Theory. Collected Papers, 1972–1977. Addison-Wesley, Oxford.

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Matsigenka community of Tayakome for hospitality and assistance, particularly Romulo and Niconor who accompanied the 2012 expedition. Antonio Guerra Rosas, Marcos Maguiña, Ricardo Ricci Bazán and Jessica Espino Ciudad are thanked for essential collaboration in the field. We also thank SERNANP (Peruvian parks agency) for authorizations that allowed us to carry out the research. A National Geographic Society grant (#8672-09) provided partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Terborgh.

Additional information

Handling editor: Mariana Meerhoff

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terborgh, J.W., Davenport, L.C., Belcon, A.U. et al. Twenty-three-year timeline of ecological stable states and regime shifts in upper Amazon oxbow lakes. Hydrobiologia 807, 99–111 (2018). https://doi.org/10.1007/s10750-017-3384-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3384-z

Keywords

Navigation