Skip to main content

Advertisement

Log in

Introducing nested spatial scales in multi-stress models: towards better assessment of human impacts on river ecosystems

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We investigated the relationships between the ecological status of wadeable rivers and the intensity of various stressors related with hydromorphological alterations, nutrient, and organic matter contaminations. The French invertebrate-based multimetric index (I2M2), which efficiently responds to the effects of both physical and chemical and hydromorphological stressors, was used as descriptor of river reach ecological status. We developed a model focusing on the effects of hydromorphological and physical and chemical stressor gradients on the I2M2 in different physiographic contexts. The potential confounding effects of natural geographic conditions and watershed scale pressure gradients were taken into account and neutralized by gathering watersheds into homogeneous clusters integrated as an interaction factor in the model. Whatever effects were considered (general or within-spatial clusters), the I2M2 was impaired similarly by the same stressor types, being negatively influenced by an increase in BOD5, ammonium, nitrite, nitrate, and total phosphorus concentrations. The I2M2 was also negatively influenced by variables describing hydromorphology at the reach scale, especially by the ‘loss of sinuosity,’ ‘increasing rates of bank erosion,’ ‘flow reductions,’ and ‘alteration of pool/riffle succession.’ The I2M2 was generally more strongly impaired by physical and chemical pressures than by hydromorphological alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abell, R. & J. D. Allan, 2002. Riparian shade and stream temperatures in an agricultural catchment, Michigan, USA. Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen, Stuttgart 2002(28): 232–237.

    Google Scholar 

  • Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257–284.

    Article  Google Scholar 

  • Allan, J. D. & L. B. Johnson, 1997. Catchment-scale analysis of aquatic ecosystems. Freshwater Biology 37: 107–111.

    Article  Google Scholar 

  • Biggs, B. J. F., S. N. Francoeur, A. D. Huryn, R. G. Young, C. J. Arbuckle & C. R. Townsend, 2000. Trophic cascades in streams: effects of nutrient enrichment on autotrophic and consumer benthic communities under two different fish predation regimes. Canadian Journal of Fisheries and Aquatic Sciences 57: 1380–1394.

    Article  Google Scholar 

  • Büttner, G. & B. Kosztra, 2007. CLC 2006 technical guidelines. Technical Report, European Environment Agency.

  • Camargo, J. A. & A. Alonso, 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International 32: 831–849.

    Article  CAS  PubMed  Google Scholar 

  • Chandesris, A., N. Mengin, J. R. Malavoi, J. G. Wasson & Y. Souchon, 2008. SYRAH-CE: SYstème Relationnel d’Audit de l’Hydromorphologie des Cours d’Eau. A relational, multi-scale system for auditing the hydro-morphology of running waters: diagnostic tool to help the WFD implementation in France. 4th International Conference on River Restoration, Venice: 4.

  • Cramer, R. D., J. D. Bunce, D. E. Patterson & I. E. Frank, 1988. Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quantitative Structure-Activity Relationships 7: 18–25.

    Article  Google Scholar 

  • Dahm, V., D. Hering, D. Nemitz, W. Graf, A. Schmidt-Kloiber, P. Leitner, A. Melcher & C. K. Feld, 2013. Effects of physics and chemistry, land use and hydromorphology on three riverine organism groups: a comparative analysis with monitoring data from Germany and Austria. Hydrobiologia 704: 389–415.

    Article  CAS  Google Scholar 

  • Dodds, W. K. & E. B. Welch, 2000. Establishing nutrient criteria in streams. Journal of the North American Benthological Society 19: 186–196.

    Article  Google Scholar 

  • Donohue, I., M. L. McGarrigle & P. Mills, 2006. Linking catchment characteristics and water chemistry with the ecological status of Irish rivers. Water Research 40: 91–98.

    Article  CAS  PubMed  Google Scholar 

  • Dosskey, M. G., P. Vidon, N. P. Gurwick, C. J. Allan, T. P. Duval & R. Lowrance, 2010. The role of riparian vegetation in protecting and improving chemical water quality in streams. Journal of the American Water Resources Association 46: 261–277.

    Article  CAS  Google Scholar 

  • Efron, B. & G. Gong, 1983. A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician 37: 36–48.

    Google Scholar 

  • European Environment Agency (ed.), 1999. Environmental Indicators: Typology and Overview. European Environment Agency, Copenhagen.

    Google Scholar 

  • Feio, M. J. & S. Dolédec, 2012. Integration of invertebrate traits into predictive models for indirect assessment of stream functional integrity: a case study in Portugal. Ecological Indicators 15: 236–247.

    Article  CAS  Google Scholar 

  • Feld, C. K., 2013. Response of three lotic assemblages to riparian and catchment-scale land use: implications for designing catchment monitoring programmes. Freshwater Biology 58: 715–729.

    Article  Google Scholar 

  • Frissell, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10: 199–214.

    Article  Google Scholar 

  • Gallant, A. L., T. R. Loveland & T. L. Sohl, 2004. Using an ecoregion framework to analyze land-cover and land-use dynamics. Environmental Management 34: S89–S110.

    Article  PubMed  Google Scholar 

  • Gieswein, A., D. Hering & C. K. Feld, 2017. Additive effects prevail: the response of biota to multiple stressors in an intensively monitored watershed. Science of the Total Environment 593–594: 27–35.

    Article  PubMed  Google Scholar 

  • Hering, D., C. Meier, C. Rawer-Jost, C. K. Feld, R. Biss & A. Zenker, 2004. Assessing streams in Germany with benthic invertebrates: selection of candidate metrics. Limnologica 34: 398–415.

    Article  Google Scholar 

  • Hering, D., R. K. Johnson, S. Kramm, S. Schmutz, K. Szoszkiewicz & P. F. M. Verdonschot, 2006. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biology 51: 1757–1785.

    Article  Google Scholar 

  • Johnson, R. K. & D. Hering, 2009. Response of taxonomic groups in streams to gradients in resource and habitat characteristics. Journal of Applied Ecology 46: 175–186.

    Article  Google Scholar 

  • Kail, J. & D. Hering, 2009. The influence of adjacent stream reaches on the local ecological status of Central European mountain streams. River Research and Applications 25: 537–550.

    Article  Google Scholar 

  • King, R. S., M. E. Baker, D. F. Whigham, D. E. Weller, T. E. Jordan, P. F. Kazyak & M. K. Hurd, 2005. Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological Applications 15: 137–153.

    Article  Google Scholar 

  • Kristensen, P., 2004. The DPSIR Framework. National Environmental Research Institute, Denmark.

    Google Scholar 

  • Lammert, M. & J. D. Allan, 1999. Assessing biotic integrity of streams: effects of scale in measuring the influence of land use/cover and habitat structure on fish and macroinvertebrates. Environmental Management 23: 257–270.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, A. W. & C. K. Feld, 2013. Upstream river morphology and riparian land use overrule local restoration effects on ecological status assessment. Hydrobiologia 704: 489–501.

    Article  Google Scholar 

  • Martens, H. & M. Martens, 2000. Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Quality and Preference 11: 5–16.

    Article  Google Scholar 

  • Marzin, A., 2013. Indicateurs biologiques de la qualité écologique des cours d’eau: variabilités et incertitudes associées. PhD thesis, AgroParisTech.

  • Marzin, A., V. Archaimbault, J. Belliard, C. Chauvin, F. Delmas & D. Pont, 2012. Ecological assessment of running waters: do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures? Ecological Indicators 23: 56–65.

    Article  CAS  Google Scholar 

  • Marzin, A., P. F. M. Verdonschot & D. Pont, 2013. The relative influence of catchment, riparian corridor, and reach-scale anthropogenic pressures on fish and macroinvertebrate assemblages in French rivers. Hydrobiologia 704: 375–388.

    Article  Google Scholar 

  • Mondy, C. P., B. Villeneuve, V. Archaimbault & P. Usseglio-Polatera, 2012. A new macroinvertebrate-based multimetric index (I2M2) to evaluate ecological quality of French wadeable streams fulfilling the WFD demands: a taxonomical and trait approach. Ecological Indicators 18: 452–467.

    Article  Google Scholar 

  • Montier, C., J. Daroussin, D. King & Y. Le Bissonnais, 1998. Cartographie de l’aléa “Erosion des Sols” en France. INRA, Orléans.

    Google Scholar 

  • Naiman, R. J., 1992. Watershed Management: Balancing Sustainability and Environmental Change. Springer, New York.

    Book  Google Scholar 

  • Omernik, J. M., 1987. Ecoregions of the conterminous United States. Annals of the Association of American Geographers 77: 118–125.

    Article  Google Scholar 

  • Parsons, M., M. C. Thoms & R. H. Norris, 2003. Scales of macroinvertebrate distribution in relation to the hierarchical organization of river systems. Journal of the North American Benthological Society 22: 105–122.

    Article  Google Scholar 

  • Parsons, M., M. C. Thoms & R. H. Norris, 2004. Using hierarchy to select scales of measurement in multiscale studies of stream macroinvertebrate assemblages. Journal of the North American Benthological Society 23: 157–170.

    Article  Google Scholar 

  • Piscart, C., R. Genoel, S. Dolédec, E. Chauvet & P. Marmonier, 2009. Effects of intense agricultural practices on heterotrophic processes in streams. Environmental Pollution 157: 1011–1018.

    Article  CAS  PubMed  Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Article  Google Scholar 

  • Reyjol, Y., C. Argillier, W. Bonne, A. Borja, A. D. Buijse, A. C. Cardoso, M. Daufresne, M. Kernan, M. T. Ferreira, S. Poikane, P. Narcís, A.-L. Solheim, S. Stroffek, P. Usseglio-Polatera, B. Villeneuve & W. Van de Bund, 2014. Assessing the ecological status in the context of the European Water Framework Directive: where do we go now? Science of the Total Environment 497: 332–344.

    Article  PubMed  Google Scholar 

  • Roth, N. E., J. D. Allan & D. L. Erickson, 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology 11: 141–156.

    Article  Google Scholar 

  • Sponseller, R. A., E. F. Benfield & H. M. Valett, 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biology 46: 1409–1424.

    Article  Google Scholar 

  • Sundermann, A., M. Gerhardt, H. Kappes & P. Haase, 2013. Stressor prioritisation in riverine ecosystems: which environmental factors shape benthic invertebrate assemblage metrics? Ecological Indicators 27: 83–96.

    Article  Google Scholar 

  • Thorp, J. H., 2014. Metamorphosis in river ecology: from reaches to macrosystems. Freshwater Biology 59: 200–210.

    Article  Google Scholar 

  • Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.

    Article  Google Scholar 

  • Townsend, C. R., S. Dolédec, R. H. Norris, K. Peacock & C. Arbuckle, 2003. The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshwater Biology 48: 768–785.

    Article  Google Scholar 

  • Van Looy, K., C. Cavillon, T. Tormos, J. Piffady, P. Landry & Y. Souchon, 2013. A scale-sensitive connectivity analysis to identify ecological networks and conservation value in river networks. Landscape Ecology 28: 1239–1249.

    Article  Google Scholar 

  • Villeneuve, B., Y. Souchon, P. Usseglio-Polatera, M. Ferréol & L. Valette, 2015. Can we predict biological condition of stream ecosystems? A multi-stressors approach linking three biological indices to physico-chemistry, hydromorphology and land use. Ecological Indicators 48: 88–98.

    Article  CAS  Google Scholar 

  • Wasson, J. G., A. Chandesris, H. Pella & L. Blanc, 2002. Définition des Hydro-écorégions françaises métropolitaines. Approche régionale de la typologie des eaux courantes et éléments pour la définition des peuplements de référence d’invertébrés. Ministère de l’Aménagement du Territoire et de l’Environnement, Cemagref Lyon BEA/LHQ p190.

  • Wasson, J. G., B. Villeneuve, A. Iital, J. Murray-Bligh, M. Dobiasova, S. Bacikova, H. Timm, H. Pella, N. Mengin & A. Chandesris, 2010. Large-scale relationships between basin and riparian land cover and the ecological status of European rivers. Freshwater Biology 55: 1465–1482.

    Article  Google Scholar 

  • Wold, S., M. Sjöström & L. Eriksson, 2001. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58: 109–130.

    Article  CAS  Google Scholar 

  • Yates, A. G. & R. C. Bailey, 2010. Covarying patterns of macroinvertebrate and fish assemblages along natural and human activity gradients: implications for bioassessment. Hydrobiologia 637: 87–100.

    Article  Google Scholar 

Download references

Acknowledgements

This research was made possible by grants and the support of the French Agency for Biodiversity (AFB-Onema; Action 32, convention Onema-Irstea 2013-2015). We greatly thank Peter W. Downs, for his review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Villeneuve.

Additional information

Handling editor: Marcelo S. Moretti

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corneil, D., Villeneuve, B., Piffady, J. et al. Introducing nested spatial scales in multi-stress models: towards better assessment of human impacts on river ecosystems. Hydrobiologia 806, 347–361 (2018). https://doi.org/10.1007/s10750-017-3374-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3374-1

Keywords

Navigation