Skip to main content
Log in

The role of macrophyte structural complexity and water flow velocity in determining the epiphytic macroinvertebrate community composition in a lowland stream

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Habitat structural complexity provided by aquatic macrophytes in lowland streams affects the associated epiphytic macroinvertebrate assemblages in both direct (increased microhabitat diversity, refuge against predation) and indirect ways (e.g. current attenuation by physical structures). In a correlative field study carried out in two different years in a Belgian stream, we investigated the effects of the factors macrophyte identity, macrophyte complexity (represented as fractal complexity) and current velocity on the composition of the macroinvertebrate community associated with monospecific macrophyte patches, consisting of plants with differing structural complexity; Sparganium emersum Rehmann (least complex), Potamogeton natans L. (intermediate) and Callitriche obtusangula Le Gall (most complex). In addition to significantly lower within-patch current velocity being observed, vegetation stands consisting of complex macrophytes also harboured significantly richer macroinvertebrate communities than stands of simpler macrophytes. A significant part of the variation in the macroinvertebrate community composition could be explained by plant identity, macrophyte complexity and current velocity. However, it was not possible to determine the relative importance of these three factors, because of their high degree of intercorrelation. Additionally, the explanatory power of these factors was higher under conditions of high current velocity, suggesting a role of macrophyte patches as instream flow refugia for macroinvertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armitage, P. D., I. Pardo & A. Brown, 1995. Temporal constancy of faunal assemblages in mesohabitats – application to management. Archiv Fur Hydrobiologie 133: 367–387.

    Google Scholar 

  • Bartholomew, A. & R. L. Shine, 2008. Space size relative to prey width (Sp/Py) influences macrofaunal colonization of artificial structures. Marine Ecology Progress Series 358: 95–102.

    Article  Google Scholar 

  • Bartholomew, A., R. J. Diaz & G. Cicchetti, 2000. New dimensionless indices of structural habitat complexity: predicted and actual effects on a predator’s foraging success. Marine Ecology Progress Series 206: 45–58.

    Article  Google Scholar 

  • Bell, N., T. Riis, A. M. Suren & A. Baattrup-Pedersen, 2013. Distribution of invertebrates within beds of two morphologically contrasting stream macrophyte species. Fundamental and Applied Limnology 183: 309–321.

    Article  Google Scholar 

  • Connor, E. F. & E. D. McCoy, 1979. Statistics and biology of the species-area relationship. American Naturalist 113: 791–833.

    Article  Google Scholar 

  • Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.

    Article  Google Scholar 

  • Den Hartog, C. & G. Van der Velde, 1988. Structural aspects of aquatic plant communities. In Symoens, J. J. (ed.), Vegetation of inland waters Handbook of vegetation science. Springer, Dordrecht: 113–153.

    Chapter  Google Scholar 

  • Elliott, J. M., 2003. A comparative study of the dispersal of 10 species of stream invertebrates. Freshwater Biology 48: 1652–1668.

    Article  Google Scholar 

  • Ferreiro, N., C. Feijoo, A. Giorgi & L. Leggieri, 2011. Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in a Pampean stream. Hydrobiologia 664: 199–211.

    Article  Google Scholar 

  • Finelli, C. M., D. D. Hart & R. A. Merz, 2002. Stream insects as passive suspension feeders: effects of velocity and food concentration on feeding performance. Oecologia 131: 145–153.

    Article  PubMed  Google Scholar 

  • Gaevskaya, N. S., 1969. The role of higher aquatic plants in the nutrition of the animals of freshwater basins (trans: Mann KH), vol 1–3. National Lending Library of Science and Technology, Boston Spa.

  • Heck Jr., K. L. & L. B. Crowder, 1991. Habitat structure and predator—prey interactions in vegetated aquatic systems. In Bell, S., E. McCoy & H. Mushinsky (eds), Habitat Structure, Vol. 8., Population and Community Biology Series Springer, Dordrecht: 281–299.

    Chapter  Google Scholar 

  • Heino, J., 2005. Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshwater Biology 50: 1578–1587.

    Article  Google Scholar 

  • Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.

    Article  Google Scholar 

  • Hill, M. O. & P. Smilauer, 2005. TWINSPAN for Windows version 2.3. Centre for Ecology and Hydrology & University of South Bohemia, Huntingdon & Ceske Budejovice.

  • Kovalenko, K., E. D. Dibble & R. Fugi, 2009. Fish feeding in changing habitats: effects of invasive macrophyte control and habitat complexity. Ecology of Freshwater Fish 18: 305–313.

    Article  Google Scholar 

  • Lancaster, J. & A. G. Hildrew, 1993. Flow refugia and the microdistribution of lotic macroinvertebrates. Journal of the North American Benthological Society 12: 385–393.

    Article  Google Scholar 

  • MacArthur, R. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.

    Article  Google Scholar 

  • Matias, M. G., A. J. Underwood, D. F. Hochuli & R. A. Coleman, 2010. Independent effects of patch size and structural complexity on diversity of benthic macroinvertebrates. Ecology 91: 1908–1915.

    Article  PubMed  Google Scholar 

  • McAbendroth, L., P. M. Ramsay, A. Foggo, S. D. Rundle & D. T. Bilton, 2005. Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 111: 279–290.

    Article  Google Scholar 

  • McNett, B. J. & A. L. Rypstra, 2000. Habitat selection in a large orb-weaving spider: vegetational complexity determines site selection and distribution. Ecological Entomology 25: 423–432.

    Article  Google Scholar 

  • Moller Pillot, H. K. M., 2009. Chironomidae Larvae. Biology and Ecology of the Chironomini. KNNV Publishing, Zeist.

    Google Scholar 

  • Moog, O., 1995. Fauna Aquatica Austriaca. Katalog zur autökologischen Einstufung aquatischer Organismen Österreichs. Bundesministerium für Land und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wasserwirtschaftskataster, Wien.

  • O Hare, M. T. & K. J. Murphy, 1999. Invertebrate hydraulic microhabitat and community structure in Callitriche stagnalis Scop. patches. Hydrobiologia 415: 169–176.

  • Palm, E., 1986. Unterfamilie Nymphulinae Nordeuropas Pyralider, med saerligt henblik pa den danske fauna (Lepidoptera: Pyralidae). Danmarks Dyreliv Bind 3, Stenstrup: 114–123.

  • Pardo, I. & P. D. Armitage, 1997. Species assemblages as descriptors of mesohabitats. Hydrobiologia 344: 111–128.

    Article  Google Scholar 

  • Peralta, G., L. A. van Duren, E. P. Morris & T. J. Bouma, 2008. Consequences of shoot density and stiffness for ecosystem engineering by benthic macrophytes in flow dominated areas: a hydrodynamic flume study. Marine Ecology Progress Series 368: 103–115.

    Article  Google Scholar 

  • Sand-Jensen, K. & J. R. Mebus, 1996. Fine-scale patterns of water velocity within macrophyte patches in streams. Oikos 76: 169–180.

    Article  Google Scholar 

  • Schmid, P. E., M. Tokeshi & J. M. Schmid-Araya, 2002. Scaling in stream communities. Proceedings of the Royal Society B: Biological Sciences 269: 2587–2594.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoelynck, J., D. Meire, K. Bal, K. Buis, P. Troch, T. Bouma, P. Meire & S. Temmerman, 2013. Submerged macrophytes avoiding a negative feedback in reaction to hydrodynamic stress. Limnologica 43: 371–380.

    Article  Google Scholar 

  • St Pierre, J. I. & K. E. Kovalenko, 2014. Effect of habitat complexity attributes on species richness. Ecosphere 5: 1–10.

    Article  Google Scholar 

  • Stevens, R. D., S. B. Cox, R. E. Strauss & M. R. Willig, 2003. Patterns of functional diversity across an extensive environmental gradient: vertebrate consumers, hidden treatments and latitudinal trends. Ecology Letters 6: 1099–1108.

    Article  Google Scholar 

  • Tachet, H., J. P. Pierrot, C. Roux & M. Bournaud, 1992. Net-building behaviour of six Hydropsyche species (Trichoptera) in relation to current velocity and distribution along the Rhône river. Journal of the North American Benthological Society 11: 350–365.

    Article  Google Scholar 

  • Taniguchi, H., S. Nakano & M. Tokeshi, 2003. Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwater Biology 48: 718–728.

    Article  Google Scholar 

  • Ter Braak, C. J. & P. Smilauer, 2012. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0. Microcomputer Power, Ithaca.

  • Thomaz, S. M. & E. R. da Cunha, 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnologica Brasiliensia 22: 218–236.

    Article  Google Scholar 

  • Townsend, C. R., R. M. Thompson, R. R. McIntosh, C. Kilroy, E. Edwards & M. R. Scarsbrook, 1998. Disturbance, resource supply, and food-web architecture in streams. Ecology Letters 1: 200–209.

    Article  Google Scholar 

  • Verdonschot, R. C. M. & E. Peeters, 2012. Preference of larvae of Enallagma cyathigerum (Odonata: Coenagrionidae) for habitats of varying structural complexity. European Journal of Entomology 109: 229–234.

    Article  Google Scholar 

  • Verdonschot, R. C. M., K. Didderen & P. F. M. Verdonschot, 2012. Importance of habitat structure as a determinant of the taxonomic and functional composition of lentic macroinvertebrate assemblages. Limnologica 42: 31–42.

    Article  Google Scholar 

  • Verschoren, V., J. Schoelynck, K. Buis, F. Visser, P. Meire & S. Temmerman, 2017. Mapping the spatio-temporal distribution of key vegetation cover properties in lowland river reaches, using digital photography. Environmental Monitoring and Assessment 189: 294.

    Article  PubMed  Google Scholar 

  • VMM - Flemish Environment Agency, 2016. Geoloket waterkwaliteit. http://geoloket.vmm.be/Geoviews/.

  • Warfe, D. M. & L. A. Barmuta, 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141: 171–178.

    Article  PubMed  Google Scholar 

  • Warfe, D. M. & L. A. Barmuta, 2006. Habitat structural complexity mediates food web dynamics in a freshwater macrophyte community. Oecologia 150: 141–154.

    Article  PubMed  Google Scholar 

  • Warfe, D. M., L. A. Barmuta & S. Wotherspoon, 2008. Quantifying habitat structure: surface convolution and living space for species in complex environments. Oikos 117: 1764–1773.

    Article  Google Scholar 

  • Winterbottom, J. H., S. E. Orton, A. G. Hildrew & J. Lancaster, 1997. Field experiments on flow refugia in streams. Freshwater Biology 37: 569–580.

    Article  Google Scholar 

Download references

Acknowledgements

Our thanks go to Susana Romero Chavez and Dorine Dekkers for their respective help with sorting and identifying the macroinvertebrates. The first author would like to thank the Biology Department of the University of Antwerp for providing a doctoral grant. Jonas Schoelynck is a postdoctoral fellow of FWO (Project No. 12H8616 N). Furthermore, we would like to thank the two anonymous reviewers, whose comments have significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Willem Wolters.

Additional information

Handling editor: Katya E. Kovalenko

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolters, JW., Verdonschot, R.C.M., Schoelynck, J. et al. The role of macrophyte structural complexity and water flow velocity in determining the epiphytic macroinvertebrate community composition in a lowland stream. Hydrobiologia 806, 157–173 (2018). https://doi.org/10.1007/s10750-017-3353-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3353-6

Keywords

Navigation