Skip to main content

Ocean acidification responses in paralarval squid swimming behavior using a novel 3D tracking system

Abstract

Chronic embryonic exposure to ocean acidification (OA) has been shown to degrade the aragonitic statolith of paralarval squid, Doryteuthis pealeii, a key structure for their swimming behavior. This study examined if day-of-hatching paralarval D. pealeii from eggs reared under chronic OA demonstrated measurable impairments to swimming activity and control. This required the development of a novel, cost-effective, and robust method for 3D motion tracking and analysis. Squid eggs were reared in pCO2 levels in a dose-dependent manner ranging from 400 to 2200 ppm. Initial 2D experiments showed paralarvae in higher acidification environments spent more time at depth. In 3D experiments, velocity, particularly positive and negative vertical velocities, significantly decreased from 400 to 1000 ppm pCO2, but showed non-significant decreases at higher concentrations. Activity and horizontal velocity decreased linearly with increasing pCO2, indicating a subtle impact to paralarval energetics. Patterns may have been obscured by notable individual variability in the paralarvae. Responses were also seen to vary between trials on cohort or potentially annual scales. Overall, paralarval swimming appeared resilient to OA, with effects being slight. The newly developed 3D tracking system provides a powerful and accessible method for future studies to explore similar questions in the larvae of aquatic taxa.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Arkhipkin, A. I. & V. A. Bizikov, 2000. Role of the statolith in functioning of the acceleration receptor system in squids and sepioids. Journal of Zoology 250: 31–55.

    Article  Google Scholar 

  2. Arnold, J. M., W. C. Summers, D. L. Gilbert, R. S. Manalis, N. W. Daw, & R. J. Lasek, 1974. A guide to laboratory use of the squid Loligo pealei.

  3. Barón, P. J., 2003. The paralarvae of two South American sympatric squid: Loligo gahi and Loligo sanpaulensis. Journal of Plankton Research 25: 1347–1358.

    Article  Google Scholar 

  4. Bartol, I. K., P. S. Krueger, J. T. Thompson & W. J. Stewart, 2008. Swimming dynamics and propulsive efficiency of squids throughout ontogeny. Integrative and Comparative Biology 48: 720–733.

    Article  PubMed  Google Scholar 

  5. Bartol, I. K., P. S. Krueger, W. J. Stewart & J. T. Thompson, 2009a. Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers. The Journal of Experimental Biology 212: 1506–1518.

    Article  PubMed  Google Scholar 

  6. Bartol, I. K., P. S. Krueger, W. J. Stewart & J. T. Thompson, 2009b. Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet “modes” and their implications for propulsive efficiency. The Journal of Experimental Biology 212: 1889–1903.

    Article  PubMed  Google Scholar 

  7. Baumann, H., R. B. Wallace, T. Tagliaferri, & C. J. Gobler, 2014. Large Natural pH, CO2 and O2 Fluctuations in a Temperate Tidal Salt Marsh on Diel, Seasonal, and Interannual Time Scales. Estuaries and Coasts.

  8. Beck, M. W., K. L. Heck, K. W. Able, D. L. Childers, D. B. Eggleston, B. M. Gillanders, B. Halpern, C. G. Hays, K. Hoshino, T. J. Minello, R. J. Orth, P. F. Sheridan & M. P. Weinstein, 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51: 633.

    Article  Google Scholar 

  9. Benoit-Bird, K. J. & W. F. Gilly, 2012. Coordinated nocturnal behavior of foraging jumbo squid Dosidicus gigas. Marine Ecology Progress Series 455: 211–228.

    Article  Google Scholar 

  10. Boisclair, D., 1992. An evaluation of the stereocinematographic method to estimate fish swimming speed. Canadian Journal of Fisheries and Aquatic Sciences 49: 523–531.

    Article  Google Scholar 

  11. Budick, S. A. & D. M. O’Malley, 2000. Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. The Journal of Experimental Biology 203: 2565–2579.

    CAS  PubMed  Google Scholar 

  12. Buresch, K. M., R. T. Hanlon, M. R. Maxwell & S. Ring, 2001. Microsatellite DNA markers indicate a high frequency of multiple paternity within individual field-collected egg capsules of the squid Loligo pealeii. Marine Ecology Progress Series 210: 161–165.

    Article  Google Scholar 

  13. Buresch, K. C., M. R. Maxwell, M. R. Cox & R. T. Hanlon, 2009. Temporal dynamics of mating and paternity in the squid Loligo pealeii. Marine Ecology Progress Series 387: 197–203.

    Article  Google Scholar 

  14. Byrne, M., 2011. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanography and Marine Biology Annual Review 49: 1–42.

    Google Scholar 

  15. Cachat, J. M., P. R. Canavello, S. I. Elkhayat, B. K. Bartels, P. C. Hart, M. F. Elegante, C. Esther, A. L. Laffoon, W. A. M. Haymore, D. H. Tien, A. K. Tien, S. Mohnot, & A. V Kalueff, 2011a. Chapter 16: Deconstructing Adult Zebrafish Behavior with Swim Trace Visualizations In Kalueff, A. V., & J. M. Cachat (eds), Zebrafish Neurobehavioral Protocols.: 191–201.

  16. Cachat, J., A. Stewart, E. Utterback, P. Hart, S. Gaikwad, K. Wong, E. Kyzar, N. Wu & A. V. Kalueff, 2011b. Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS ONE 6: e17597.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Caldeira, K. & M. E. Wickett, 2003. Oceanography: anthropogenic carbon and ocean pH. Nature 425: 365.

    CAS  Article  PubMed  Google Scholar 

  18. Coughlin, D. J., J. R. Strickler & B. Sanderson, 1992. Swimming and Search Behavior in Clownfish, Amphiprion-Perideraion, Larvae. Animal Behaviour 44: 427–440.

    Article  Google Scholar 

  19. Doney, S. C., V. J. Fabry, R. A. Feely & J. A. Kleypas, 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1: 169–192.

    Article  PubMed  Google Scholar 

  20. Fuchs, H. L., L. S. Mullineaux & A. R. Solow, 2004. Sinking behavior of gastropod larvae (Ilyanassa obsoleta) in turbulence. Limnology and Oceanography 49: 1937–1948.

    Article  Google Scholar 

  21. Gledhill, D., M. White, J. Salisbury, H. Thomas, I. Misna, M. Liebman, B. Mook, J. Grear, A. C. Candelmo, R. C. Chambers, C. J. Gobler, C. W. Hunt, A. L. King, N. N. Price, S. R. Signorini, E. Stancioff, C. Stymiest, R. A. Wahle, J. D. Waller, N. D. Rebuck & Z. A. Wang, 2015. Ocean and coastal acidification off New England and Nova Scotia. Oceanography 28: 182–197.

    Article  Google Scholar 

  22. Guppy, M. & P. Withers, 1999. Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biological reviews of the Cambridge Philosophical Society 74: 1–40.

    CAS  Article  PubMed  Google Scholar 

  23. Gutowska, M. A. & F. Melzner, 2009. Abiotic conditions in cephalopod (Sepia officinalis) eggs: embryonic development at low pH and high pCO2. Marine Biology 156: 515–519.

    CAS  Article  Google Scholar 

  24. Gutowska, M. A., F. Melzner, M. Langenbuch, C. Bock, G. Claireaux & H. O. Pörtner, 2010. Acid–base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. Journal of Comparative Physiology B 180: 323–335.

    CAS  Article  Google Scholar 

  25. Hanlon, R. T., R. F. Hixon & W. H. Hulet, 1983. Survival, growth, and behavior of the loliginid squids Lologi plei, Loligo pealei, and Lolliguncula brevis (Mollusca: Cephalopoda) in closed sea water systems. Biology Bulletin 165: 637–685.

    Article  Google Scholar 

  26. Hanlon, R., J. Bidwell & R. Tait, 1989. Strontium is required for statolith development and thus normal swimming behaviour of hatchling cephalopods. Journal of Experimental Biology 141: 187–195.

    CAS  PubMed  Google Scholar 

  27. Hastie, L. C., G. J. Pierce, J. Wang, I. Bruno & A. Moreno, 2009. Cephalopods in the North-Eastern Atlantic: species, biogeography, ecology, exploitation and conservation. Oceanography and Marine Biology: An Annual Review 47: 111–190.

    Google Scholar 

  28. Haury, L. & D. Weihs, 1976. Energetically efficient swimming behavior of negatively buoyant zooplankton. Limnology and Oceanography 21: 797–803.

    Article  Google Scholar 

  29. Herke, S. W. & D. W. Foltz, 2002. Phylogeography of two squid (Loligo pealei and L. plei) in the Gulf of Mexico and northwestern Atlantic Ocean. Marine Biology 140: 103–115.

    CAS  Article  Google Scholar 

  30. Hidu, H. & H. H. Haskin, 1978. Swimming speeds of oyster larvae Crassostrea virginica in different salinities and temperatures. Estuaries 1: 252–255.

    Article  Google Scholar 

  31. Honisch, B., A. Ridgwell, D. N. Schmidt, E. Thomas, S. J. Gibbs, A. Sluijs, R. Zeebe, L. Kump, R. C. Martindale, S. E. Greene, W. Kiessling, J. Ries, J. C. Zachos, D. L. Royer, S. Barker, T. M. Marchitto, R. Moyer, C. Pelejero, P. Ziveri, G. L. Foster & B. Williams, 2012. The geological record of ocean acidification. Science 335: 1058–1063.

    Article  PubMed  Google Scholar 

  32. Hu, M. Y., E. Sucre, M. Charmantier-Daures, G. Charmantier, M. Lucassen, N. Himmerkus & F. Melzner, 2010. Localization of ion-regulatory epithelia in embryos and hatchlings of two cephalopods. Cell and Tissue Research 339: 571–583.

    CAS  Article  PubMed  Google Scholar 

  33. Hu, M. Y., Y.-C. Tseng, M. Stumpp, M. A. Gutowska, R. Kiko, M. Lucassen & F. Melzner, 2011. Elevated seawater PCO differentially affects branchial acid-base transporters over the course of development in the cephalopod Sepia officinalis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 300: R1100–R1114.

    CAS  Article  PubMed  Google Scholar 

  34. Hu, M. Y., J.-R. Lee, L.-Y. Lin, T.-H. Shih, M. Stumpp, M.-F. Lee, P.-P. Hwang & Y.-C. Tseng, 2013. Development in a naturally acidified environment: Na +/H + -exchanger 3-based proton secretion leads to CO2 tolerance in cephalopod embryos. Frontiers in zoology 10: 51.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hunsicker, M. E. & T. E. Essington, 2008. Evaluating the potential for trophodynamic control of fish by the longfin inshore squid (Loligo pealeii) in the Northwest Atlantic Ocean. Canadian Journal of Fisheries and Aquatic Sciences 65: 2524–2535.

    Article  Google Scholar 

  36. Jacobson, L. D., 2005. Longfin Inshore Squid, Loligo pealeii, Life History and Habitat Characteristics. NOAA Technical Memorandum NMFS-NE.

  37. Kaplan, M. B., T. A. Mooney, D. C. McCorkle & A. L. Cohen, 2013. Adverse effects of ocean acidification on early development of squid (Doryteuthis pealeii). PLOS ONE 8: e63714.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Klimley, A. P. & S. T. Brown, 1983. Stereophotography for the field biologist: measurement of lengths and three-dimensional positions of free-swimming sharks. Marine Biology 74: 175–185.

    Article  Google Scholar 

  39. Long, M. H., T. A. Mooney & C. Zakroff, 2016. Extreme low oxygen and decreased pH conditions naturally occur within developing squid egg capsules. Marine Ecology Progress Series 550: 111–119.

    CAS  Article  Google Scholar 

  40. Macy III, W. K., 1982. Feeding patterns of the long-finned squid, Loligo pealei, in New England Waters. Biological Bulletin 162: 28–38.

    Article  Google Scholar 

  41. Macy III, W. K. & J. K. T. Brodziak, 2001. Seasonal maturity and size at age of Loligo pealeii in waters of southern New England. ICES Journal of Marine Science 58: 852–864.

    Article  Google Scholar 

  42. Martins, R. S., M. J. Roberts, N. Chang, P. Verley, C. L. Moloney & E. A. Vidal, 2010. Effect of yolk utilization on the specific gravity of chokka squid (Loligo reynaudii) paralarvae: implications for dispersal on the Agulhas Bank, South Africa. ICES Journal of Marine Science 67: 1323–1335.

    Google Scholar 

  43. Maxwell, M. R. & R. T. Hanlon, 2000. Female reproductive output in the squid Loligo pealeii: multiple egg clutches and implications for a spawning strategy. Marine Ecology Progress Series 199: 159–170.

    Article  Google Scholar 

  44. McCorkle, D. C., C. Weidman & A. L. Cohen, 2012. Time series of pCO2, pH, and aragonite saturation state in Waquoit Bay National Estuarine Research Reserve: “estaurine acidification” and shellfish. Ocean Sciences Meeting, Salt Lake City, UT.

    Google Scholar 

  45. McMahon, J. J. & W. C. Summers, 1971. Temperature effects on the developmental rate of squid (Loligo pealei) embryos. The Biological Bulletin 141: 561–567.

    Article  Google Scholar 

  46. Messenger, J. B., 1970. Optomotor responses and nystagmus in intact, blinded and statocystless cuttlefish (Sepia officinalis L.). The Journal of experimental biology 53: 789–796.

    CAS  PubMed  Google Scholar 

  47. Miller, G. M., S.-A. Watson, J. M. Donelson, M. I. McCormick & P. L. Munday, 2012. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nature Climate Change Nature Publishing Group 2: 858–861.

    CAS  Article  Google Scholar 

  48. Murray, C. S., A. Malvezzi, C. J. Gobler & H. Baumann, 2014. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Marine Ecology Progress Series 504: 1–11.

    Article  Google Scholar 

  49. Navarro, M. O., E. E. Bockmon, C. A. Frieder, J. P. Gonzalez & L. A. Levin, 2014. Environmental pH, O2 and capsular effects on the geochemical composition of statoliths of embryonic squid Doryteuthis opalescens. Water 6: 2233–2254.

    Article  Google Scholar 

  50. Navarro, M. O., G. T. Kwan, O. Batalov, C. Y. Choi, N. T. Pierce & L. A. Levin, 2016. Development of Embryonic market squid, Doryteuthis opalescens, under chronic exposure to low environmental pH and [O2]. Plos ONE 11: e0167461.

    Article  PubMed  PubMed Central  Google Scholar 

  51. O’Dor, R. K. & D. M. Webber, 1986. The constraints on cephalopods: why squid aren’t fish. Canadian Journal of Zoology 64: 1591–1605.

    Article  Google Scholar 

  52. Pecl, G. T., N. A. Moltschaniwskyj, S. R. Tracey & A. R. Jordan, 2004. Inter-annual plasticity of squid life history and population structure: ecological and management implications. Oecologia 139: 515–524.

    CAS  Article  PubMed  Google Scholar 

  53. Putnam, H. M. & R. D. Gates, 2015. Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. Journal of Experimental Biology 218: 2365–2372.

    Article  PubMed  Google Scholar 

  54. Redfield, A. C. & R. Goodkind, 1929. The significance of the bohr effect in the respiration and asphyxiation of the squid, Loligo pealei. Journal of Experimental Biology 6: 340–349.

    CAS  Google Scholar 

  55. Robin, J. P., M. Roberts, L. Zeidberg, I. Bloor, A. Rodriguez, F. Briceño, N. Downey, M. Mascaró, M. Navarro, A. Guerra, J. Hofmeister, D. D. Barcellos, S. A. P. Lourenço, C. F. E. Roper, N. A. Moltschaniwskyj, C. P. Green & J. Mather, 2014. Transitions during cephalopod life history: the role of habitat, environment, functional morphology and behaviour. Advances in Marine Biology 67: 361–437.

    Article  PubMed  Google Scholar 

  56. Rosa, R., K. Trübenbach, T. Repolho, M. Pimentel, F. Faleiro, J. Boavida-Portugal, M. Baptista, V. M. Lopes, G. Dionísio, M. C. Leal, R. Calado & H. O. Pörtner, 2013. Lower hypoxia thresholds of cuttlefish early life stages living in a warm acidified ocean. Proceedings of the Royal Society B: Biological Sciences 280: 20131695.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rosa, R., K. Trübenbach, M. S. Pimentel, J. Boavida-Portugal, F. Faleiro, M. Baptista, G. Dionísio, R. Calado, H. O. Pörtner & T. Repolho, 2014. Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris). The Journal of Experimental Biology 217: 518–525.

    Article  PubMed  Google Scholar 

  58. Seibel, B. A., 2013. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones II: blood-oxygen binding. Deep-Sea Research Part II: Topical Studies in Oceanography Elsevier 95: 139–144.

    CAS  Article  Google Scholar 

  59. Seibel, B. A., F. G. Hochberg & D. B. Carlini, 2000. Life history of Gonatus onyx (Cephalopoda: Teuthoidea): deep-sea spawning and post-spawning egg care. Marine Biology 137: 519–526.

    Article  Google Scholar 

  60. Shashar, N. & R. T. Hanlon, 2013. Spawning behavior dynamics at communal egg beds in the squid Doryteuthis (Loligo) pealeii. Journal of Experimental Marine Biology and Ecology 447: 65–74.

    Article  Google Scholar 

  61. Sokolova, I. M., 2013. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integrative and Comparative Biology 53: 597–608.

    Article  PubMed  Google Scholar 

  62. Sokolova, I. M., M. Frederich, R. Bagwe, G. Lannig & A. A. Sukhotin, 2012. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Marine Environmental Research 79: 1–15.

    CAS  Article  PubMed  Google Scholar 

  63. Staaf, D. J., W. F. Gilly & M. W. Denny, 2014. Aperture effects in squid jet propulsion. The Journal of Experimental Biology 217: 1588–1600.

    Article  PubMed  Google Scholar 

  64. Stamhuis, E. & J. Videler, 1995. Quantitative flow analysis around aquatic animals using laser sheet particle image velocimetry. The Journal of Experimental Biology 198: 283–294.

    CAS  PubMed  Google Scholar 

  65. Steer, M. A., N. A. Moltschaniwskyj, D. S. Nichols & M. Miller, 2004. The role of temperature and maternal ration in embryo survival: using the dumpling squid Euprymna tasmanica as a model. Journal of Experimental Marine Biology and Ecology 307: 73–89.

    Article  Google Scholar 

  66. Summers, W. C., 1971. Age and growth of Loligo pealei, a population study of the common Atlantic coast squid. Biological Bulletin 141: 189–201.

    Article  Google Scholar 

  67. Summers, W. C., J. J. McMahon & G. N. P. A. Ruppert, 1974. Studies on the maintenance of adult Squid (Loligo Peali). II. Empirical extensions. Biological Bulletin 146: 291–301.

    CAS  Article  PubMed  Google Scholar 

  68. Vecchione, M., 1981. Aspects of the early life history of Loligo pealeii (Cephalopoda; Myopsida). Journal of Shellfish Research 1: 171–180.

    Google Scholar 

  69. Vecchione, M., C. F. E. Roper, M. J. Sweeney & C. C. Lu, 2001. Distribution, relative abundance and developmental morphology of paralarval cephalopods in the Western North Atlantic Ocean. NOAA Technical Reports NMFS 152: 54.

    Google Scholar 

  70. Vidal, E. A. G., F. P. DiMarco, J. H. Wormuth & P. G. Lee, 2002a. Influence of temperature and food availability on survival, growth and yolk utilization in hatchling squid. Bulletin of Marine Science 71: 915–931.

    Google Scholar 

  71. Vidal, E. A. G., F. P. DiMarco, J. H. Wormuth & P. G. Lee, 2002b. Optimizing rearing conditions of hatchling loliginid squid. Marine Biology 140: 117–127.

    Article  Google Scholar 

  72. Villanueva, R., C. Nozais & S. V. Boletzky, 1997. Swimming behaviour and food searching in planktonic Octopus vulgaris Cuvier from hatching to settlement. Journal of Experimental Marine Biology and Ecology 208: 169–184.

    Article  Google Scholar 

  73. Vogel, S., 1981. Life in Moving Fluids: The Physical Biology of Flow. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  74. Wang, Z. A., R. Wanninkhof, W.-J. Cai, R. H. Byrne, X. Hu, T.-H. Peng & W.-J. Huang, 2013. The marine inorganic carbon system along the Gulf of Mexico and Atlantic coasts of the United States: insights from a transregional coastal carbon study. Limnology and Oceanography 58: 325–342.

    CAS  Article  Google Scholar 

  75. Wassersug, R. & K. von Seckendorf Hoff, 1985. The kinematics of swimming in anuran larvae. Journal of experimental biology 119: 1–30.

    Google Scholar 

  76. Wheeler, J. D., K. R. Helfrich, E. J. Anderson, B. McGann, P. Staats, A. E. Wargula, K. Wilt & L. S. Mullineaux, 2013. Upward swimming of competent oyster larvae Crassostrea virginica persists in highly turbulent flow as detected by PIV flow subtraction. Marine Ecology Progress Series 488: 171–185.

    Article  Google Scholar 

  77. Wheeler, J. D., K. R. Helfrich, E. J. Anderson & L. S. Mullineaux, 2015. Isolating the hydrodynamic triggers of the dive response in eastern oyster larvae. Limnology and Oceanography. 60: 1332–1343.

    Article  Google Scholar 

  78. Yamaoka, K., T. Nanbu, M. Miyagawa, T. Isshiki & A. Kusaka, 2000. Water surface tension-related deaths in prelarval red-spotted grouper. Aquaculture 189: 165–176.

    Article  Google Scholar 

  79. York, C. A. & I. K. Bartol, 2016. Anti-predator behavior of squid throughout ontogeny. Journal of Experimental Marine Biology and Ecology 480: 26–35.

    Article  Google Scholar 

  80. Zeidberg, L. D., G. Isaac, C. L. Widmer, H. Neumeister & W. F. Gilly, 2011. Egg capsule hatch rate and incubation duration of the California market squid, Doryteuthis (= Loligo) opalescens: insights from laboratory manipulations. Marine Ecology 32: 468–479.

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Remsen, the MBL Marine Resources Center staff, and MBL Gemma crew for their support in acquiring squid. R. Galat and the facilities staff of the WHOI ESL provided system support. D. McCorkle, KYK Chan, and M. White provided valuable insight on the OA system. E. Moberg, A. Beet, and A. Solow assisted in the development and coding of the 3D model system. We also thank E. Bonk, K. Hoering, M. Lee, D. Weiler, and A. Schlunk for their assistance and input with the experiments. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374. This project is funded by NSF Grant No. 1220034.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Casey Zakroff.

Additional information

Guest editors: Erica A. G. Vidal, Ian G. Gleadall & Natalie Moltschaniswskyi / Advances in Cephalopod Ecology and Life Cycles

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 269 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zakroff, C., Mooney, T.A. & Wirth, C. Ocean acidification responses in paralarval squid swimming behavior using a novel 3D tracking system. Hydrobiologia 808, 83–106 (2018). https://doi.org/10.1007/s10750-017-3342-9

Download citation

Keywords

  • Hypercapnia
  • Cephalopod
  • Larvae
  • Movement analysis
  • Stress physiology