Primary production in nutrient-rich kettle holes and consequences for nutrient and carbon cycling

Abstract

Kettle holes are often abundant within agriculturally used moraine landscapes. They are highly enriched with nutrients and considered hotspots of carbon turnover. However, data on their primary productivity remain rare. We analysed two kettle holes typical to Germany with common aquatic plant communities during one year. We hypothesised that gross primary production (GPP) rates would be high compared to other temperate freshwater ecosystems, leading to high sediment deposition. Summer GPP rates (4.5–5.1 g C m−2 day−1) were higher than those of most temperate freshwater systems, but GPP rates were reduced by 90% in winter. Macrophytes dominated GPP from May to September with emergent macrophytes accounting for half of the GPP. Periphyton contributed to most of the system GPP throughout the rest of the year. Sediment deposition rates were high and correlated with GPP in one kettle hole. In contrast, due to prolonged periods of anoxia, aerobic sediment mineralisation was low while sediment phosphorus release was significant. Our results suggest that kettle holes have a high potential for carbon burial, provided they do not fully dry up during warm years. Due to their unique features, they should not be automatically grouped with ponds and shallow lakes in global carbon budget estimates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abril, G., J. M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J. H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza & F. Roland, 2014. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505: 395–398.

    CAS  Article  PubMed  Google Scholar 

  2. Armstrong, N., D. Planas & E. Prepas, 2003. Potential for estimating macrophyte surface area from biomass. Aquatic Botany 75: 173–179.

    Article  Google Scholar 

  3. Badiou, P., R. McDougal, D. Pennock & B. Clark, 2011. Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region. Wetlands Ecology and Management 19: 237–256.

    CAS  Article  Google Scholar 

  4. Baird, D. J., T. E. Gates & R. W. Davies, 1987. Oxygen conditions in two prairie pothole lakes during winter ice cover. Canadian Journal of Fisheries and Aquatic Sciences 44: 1092–1095.

    CAS  Article  Google Scholar 

  5. Bastviken, D., L. Persson, G. Odham & L. J. Tranvik, 2004. Degradation of dissolved organic matter in oxic and anoxic lake water. Limnology and Oceanography 49: 109–116.

    CAS  Article  Google Scholar 

  6. Battin, T. J., S. Luyssaert, L. A. Kaplan, A. K. Aufdenkampe, A. Richter & L. J. Tranvik, 2009. The boundless carbon cycle. Nature Geoscience 2: 598–600.

    CAS  Article  Google Scholar 

  7. Best, E. P. H., 1982. The aquatic macrophytes of Lake Vechten. Species composition, spatial distribution and production. Hydrobiologia 95: 65–77.

    Article  Google Scholar 

  8. Blindow, I., A. Hargeby, J. Meyercordt & H. Schubert, 2006. Primary production in two shallow lakes with contrasting plant form dominance: a paradox of enrichment? Limnology and Oceanography 51: 2711–2721.

    Article  Google Scholar 

  9. Brothers, S. M., S. Hilt, S. Meyer & J. Köhler, 2013a. Plant community structure determines primary productivity in shallow, eutrophic lakes. Freshwater Biology 58: 2264–2276.

    CAS  Google Scholar 

  10. Brothers, S. M., S. Hilt, K. Attermeyer, H. P. Grossart, S. Kosten, B. Lischke, T. Mehner, N. Meyer, K. Scharnweber & J. Köhler, 2013b. A regime shift from macrophyte to phytoplankton dominance enhances carbon burial in a shallow, eutrophic lake. Ecosphere 4: 1–17.

    Article  Google Scholar 

  11. Brothers, S. M., J. Köhler, G. Kazanjian, U. Scharfenberger & S. Hilt, 2017. Convective mixing and high littoral production established systematic errors in the diel oxygen curves of a shallow, eutrophic lake. Limnology & Oceanography: Methods 15: 429–435.

    Article  Google Scholar 

  12. Buffam, I., M. G. Turner, A. R. Desai, P. C. Hanson, J. A. Rusak, N. R. Lottig, E. H. Stanley & S. R. Carpenter, 2011. Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Global Change Biology 17: 1193–1211.

    Article  Google Scholar 

  13. Carpenter, S. R., 1989. Replication and treatment strength in whole lake experiments. Ecology 70: 453–463.

    Article  Google Scholar 

  14. Carpenter, S. R., J. J. Cole, M. L. Pace, M. Van De Bogert, D. L. Bade, D. Bastviken, C. M. Gille, J. R. Hodgson, J. F. Kitchell & S. Kritzberg, 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from 13 C addition to contrasting lakes. Ecology 86: 2737–2750.

    Article  Google Scholar 

  15. Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 172–185.

    Article  Google Scholar 

  16. Coloso, J. J., J. J. Cole, P. C. Hanson & M. L. Pace, 2008. Depth-integrated, continuous estimates of metabolism in a clear-water lake. Canadian Journal of Fisheries and Aquatic Sciences 65: 712–722.

    Article  Google Scholar 

  17. Creed, I. F., J. Miller, D. Aldred, J. K. Adams, S. Spitale & R. A. Bourbonniere, 2013. Hydrologic profiling for greenhouse gas effluxes from natural grasslands in the prairie pothole region of Canada. Journal of Geophysical Research: Biogeosciences 118: 680–697.

    CAS  Google Scholar 

  18. Dean, W. E. & E. Gorham, 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26: 535–538.

    Article  Google Scholar 

  19. DEV, 2009. Deutsche Einheitsverfahren zur Wasser-, Abwasser und Schlammuntersuchung. VCH Verlagsgesellschaft mbH, Beuth Verlag GmbH, Weinheim.

    Google Scholar 

  20. Domine, L. M., 2011. Mechanisms influencing carbon burial in prairie pothole shallow lakes. PhD Thesis, University of Minnesota.

  21. Downing, J. A.., J. J. Cole, J. J. Middelburg, R. G. Striegl, C. M. Duarte, P. Kortelainen, Y. T. Prairie, K. A. Laube, 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochemical Cycles 22(1).

  22. Eigemann, F., U. Mischke, M. Hupfer & S. Hilt, 2016. Biological indicators track differential response of pelagic and littoral areas to nutrient load reduction in German lakes. Ecological Indicators 61: 905–910.

    CAS  Article  Google Scholar 

  23. Euliss, N. H., R. A. Gleason, A. Olness, R. L. McDougal, H. R. Murkin, R. D. Robarts, R. A. Bourbonniere, B. G. Warner, 2006. North American prairie wetlands are important nonforested land-based carbon storage sites. Science of The Total Environment 361(1–3): 179–188.

  24. Ferland, M. E., Y. T. Prairie, C. Teodoru & P. A. Del Giorgio, 2014. Linking organic carbon sedimentation, burial efficiency, and long-term accumulation in boreal lakes. Journal of Geophysical Research: Biogeosciences 119: 836–847.

    CAS  Google Scholar 

  25. Filbin, G. J. & R. A. Hough, 1983. Specific leaf area, photosynthesis, and respiration in two sympatric Nymphaeaceae populations. Aquatic Botany 17: 157–165.

    Article  Google Scholar 

  26. Filbin, G. J. & R. A. Hough, 1985. Photosynthesis, photorespiration, and productivity in Lemna minor L. Limnology and Oceanography 30: 322–334.

    CAS  Article  Google Scholar 

  27. Fischer, H. & M. Pusch, 2001. Comparison of bacterial production in sediments, epiphyton and the pelagic zone of a lowland river. Freshwater Biology 46: 1335–1348.

    Article  Google Scholar 

  28. Gächter, R. & B. Müller, 2003. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to the sediment surface. Limnology and Oceanography 48: 929–933.

    Article  Google Scholar 

  29. Germer, S., K. Kaiser, O. Bens & R. F. Hüttl, 2011. Water balance changes and responses of ecosystems and society in the Berlin-Brandenburg Region – a Review. Die Erde 142: 65–95.

    Google Scholar 

  30. Graneli, W., 1979. A comparison of carbon dioxide production and oxygen uptake in sediment cores from four south Swedish lakes. Ecography 2: 51–57.

    CAS  Article  Google Scholar 

  31. Hagerthey, S. E., J. J. Cole & D. Kilbane, 2010. Aquatic metabolism in the Everglades: dominance of water column heterotrophy. Limnology and Oceanography 55: 653–666.

    CAS  Article  Google Scholar 

  32. Hanson, P. C., D. L. Bade, S. R. Carpenter, T. K. Kratz, 2003. Lake metabolism: Relationships with dissolved organic carbon and phosphorus. Limnology and Oceanography 48(3): 1112–1119.

    CAS  Article  Google Scholar 

  33. Hanson, P. C., S. R. Carpenter, N. Kimura, C. Wu, S. P. Cornelius & T. K. Kratz, 2008. Evaluation of metabolism models for free-water dissolved oxygen methods in lakes. Limnology and Oceanography: Methods 6: 454–465.

    CAS  Article  Google Scholar 

  34. Heathcote, A. J., N. J. Anderson, Y. T. Prairie, D. R. Engstrom & P. A. Del Giorgio, 2016. Large increases in carbon burial in northern lakes during the Anthropocene. Nature Communications 6: 10016.

    Article  Google Scholar 

  35. Hocking, P. J., 1989. Seasonal dynamics of production, and nutrient accumulation and cycling by Phragmites australis (Cav.) Trin. ex Steudel in a nutrient-enriched swamp in Inland Australia. I. Whole Plants. Journal of Marine and Freshwater Research 40: 421–444.

    CAS  Article  Google Scholar 

  36. Hoellein, T. J., D. A. Bruesewitz & D. C. Richardson, 2013. Revisiting Odum (1956): a synthesis of aquatic ecosystem metabolism. Limnology and Oceanography 58: 2089–2100.

    CAS  Article  Google Scholar 

  37. Holgerson, M. A., 2015. Drivers of carbon dioxide and methane supersaturation in small, temporary ponds. Biogeochemistry 124: 305–318.

    CAS  Article  Google Scholar 

  38. Holgerson, M. A. & P. A. Raymond, 2016. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience 9: 222–226.

    CAS  Article  Google Scholar 

  39. Isidorova, A., A. G. Bravo, G. Riise, S. Bouchait, E. Björn & S. Sobek, 2016. The effect of lake browning and respiration mode on the burial and fate of carbon in the sediment of two boreal lakes. Journal of Geophysical Research: Biogeosciences 121: 233–245.

    CAS  Google Scholar 

  40. Jones, J. I. & C. D. Sayer, 2003. Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology 84: 2155–2167.

    Article  Google Scholar 

  41. Kalettka, T., 1996. Die Problematik der Sölle (Kleinhohlformen) im Jungmoränenland Nordostdeutschlands. In Naturschutz und Landschaftspflege in Brandenburg (Sonderheft) 4–13.

  42. Kalettka, T. & C. Rudat, 2006. Hydrogeomorphic types of glacially created kettle holes in North-East Germany. Limnologica 36: 54–64.

    Article  Google Scholar 

  43. Kalettka, T., C. Rudat & J. Quast, 2001. ‘‘Potholes’’ in Northeast German agro-landscapes: functions, land use impacts, and protection strategies. In Tenhunen, J. D., R. Lenz & R. Hantschel (eds), Ecosystem Approaches to Landscape Management in Central Europe. Ecological Studies, Springer, Berlin 147: 291–298.

  44. Kleeberg, A., C. Herzog & M. Hupfer, 2013. Redox sensitivity of iron in phosphorus binding does not impede lake restoration. Water Research 47: 1491–1502.

    CAS  Article  PubMed  Google Scholar 

  45. Kleeberg, A., M. Neyen & T. Kalettka, 2016a. Element-specific downward fluxes impact the metabolism and vegetation of kettle holes. Hydrobiologia 766: 261–274.

    CAS  Article  Google Scholar 

  46. Kleeberg, A., M. Neyen, U. K. Schkade, T. Kalettka & G. Lischeid, 2016b. Sediment cores from kettle holes in NE Germany reveal recent impacts of agriculture. Environmental Science and Pollution Research 23: 7409–7424.

    CAS  Article  PubMed  Google Scholar 

  47. Körner, S. & H. Kühl, 1996. Submerged macrophytes in the treated sewage channel Wuhle (Berlin, Germany). Internationale Revue der gesamten Hydrobiologie 81: 385–397.

    Article  Google Scholar 

  48. Liboriussen, L. & E. Jeppesen, 2003. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology 48: 418–431.

    Article  Google Scholar 

  49. Lischeid, G. & T. Kalettka, 2012. Grasping the heterogeneity of kettle hole water quality in Northeast Germany. Hydrobiologia 689: 63–77.

    CAS  Article  Google Scholar 

  50. Lorenz, S., J. J. Rasmussen, A. Süß, T. Kalettka, B. Golla, P. Horney, M. Stähler, B. Hommel & R. B. Schäfer, 2016. Specifics and challenges of assessing exposure and effects of pesticides in small water bodies. Hydrobiologia, 1–12.

  51. Luthardt, V. & F. Dreger, 1996. Ist-Zustandsanalyse und Bewertung der Vegetation von Söllen in der Uckermark. Naturschutz und Landschaftspflege in Brandenburg. Sonderheft Sölle, UNZE, Golm, 31–38.

  52. Mitsch, W. J. & J. G. Gosselink, 1993. Wetlands, 2nd ed. Van Nostrand Reinhold, New York.

    Google Scholar 

  53. Nitzsche, K., V. Verch, K. Premke, A. Gessler & Z. E. Kayler, 2016. Visualizing land-use and management complexity within biogeochemical cycles of an agricultural landscape. Ecosphere 7: e01282.

    Article  Google Scholar 

  54. Pätzig, M., T. Kalettka, M. Glemnitz & G. Berger, 2012. What governs macrophyte species richness in kettle hole types? A case study from Northeast Germany. Limnologica 42: 340–354.

    Article  Google Scholar 

  55. Pettit, N. E., D. P. Ward, M. F. Adame, D. Valdez & S. E. Bunn, 2016. Influence of aquatic plant architecture on epiphyte biomass on a tropical river floodplain. Aquatic Botany 129: 35–43.

    Article  Google Scholar 

  56. Prairie, Y. T., D. F. Bird & J. J. Cole, 2002. The summer metabolic balance in the epilimnion of southeastern Quebec lakes. Limnology and Oceanography 47: 316–321.

    CAS  Article  Google Scholar 

  57. Premke, K., K. Attermeyer, J. Augustin, A. Cabezas, P. Casper, D. Deumlich, J. Gelbrecht, H. Gerke, A. Gessler, H. P. Grossart, S. Hilt, M. Hupfer, T. Kalettka, Z. E. Kayler, G. Lischeid, M. Sommer & D. Zak, 2016. The importance of landscape complexity for carbon fluxes on the landscape level: small-scale heterogeneity matters. WIREs Water 3: 601–617.

    CAS  Article  Google Scholar 

  58. Raymond, P. A., J. Hartmann, R. Lauerwald, S. Sobek, C. McDonald & M. Hoover, 2013. Global carbon dioxide emissions from inland waters. Nature 503: 355–359.

    CAS  Article  PubMed  Google Scholar 

  59. Reeder, B. C., 2011. Assessing constructed wetland functional success using diel changes in dissolved oxygen, pH, and temperature in submerged, emergent, and open-water habitats in the Beaver Creek Wetlands Complex, Kentucky (USA). Ecological Engineering 37: 1772–1778.

    Article  Google Scholar 

  60. Reverey, R., H. P. Grossart, K. Premke & G. Lischeid, 2016. Carbon and nutrient cycling in kettle hole sediments depending on hydrological dynamics: a review. Hydrobiologia 775: 1–20.

    CAS  Article  Google Scholar 

  61. Rothe, M., A. Kleeberg, B. Grüneberg, K. Friese, M. Pérez-Mayo & M. Hupfer, 2015. Sedimentary sulphur: iron ratio indicates vivianite occurrence: a study from two contrasting freshwater systems. PLoS ONE 10: e0143737.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sand-Jensen, K. & P. A. Staehr, 2009. Net heterotrophy in small Danish lakes: a widespread feature over gradients in trophic status and land cover. Ecosystems 12: 336–348.

    CAS  Article  Google Scholar 

  63. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    CAS  Article  PubMed  Google Scholar 

  64. Scheffer, M., S. Szabó, A. Gragnani, E. H. Van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. M. M. Roijackers & R. J. M. Franken, 2003. Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences of the United States of America 100: 4040–4045.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Shatwell, T., A. Nicklisch, J. Köhler, 2012. Temperature and photoperiod effects on phytoplankton growing under simulated mixed layer light fluctuations. Limnology and Oceanography 57(2): 541–553.

  66. Sobek, S., E. Durisch-Kaiser, R. Zurbrügg, N. Wongfun, M. Wessels, N. Pasche & B. Wehrli, 2009. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnology and Oceanography 54: 2243–2254.

    Article  Google Scholar 

  67. Spence, D. H. N. & J. Chrystal, 1970. Photosynthesis and Zonation of Freshwater Macrophytes: I. Depth Distribution And Shade Tolerance. New Phytologist: 205–215.

  68. Staehr, P. A., D. Bade, G. R. Koch, C. Williamson, P. Hanson, J. J. Cole & T. Kratz, 2010. Lake metabolism and the diel oxygen technique: state of the science. Limnology and Oceanography: Methods 8: 628–644.

    CAS  Article  Google Scholar 

  69. Staehr, P. A., J. M. Testa, W. M. Kemp, J. J. Cole, K. Sand-Jensen & S. V. Smith, 2011. The metabolism of aquatic ecosystems: history, applications, and future challenges. Aquatic Sciences 74: 15–29.

    Article  Google Scholar 

  70. Stallard, R. F., 1998. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles 12: 231–257.

    CAS  Article  Google Scholar 

  71. Twilley, R. R., L. R. Blanton, M. M. Brinson & G. J. Davis, 1985. Biomass production and nutrient cycling in aquatic macrophyte communities of the Chowan River, North Carolina. Aquatic Botany 22: 231–252.

    Article  Google Scholar 

  72. Van de Bogert, M. C., D. L. Bade, S. R. Carpenter, J. J. Cole, M. L. Pace, P. C. Hanson & O. C. Langman, 2012. Spatial heterogeneity strongly affects estimates of ecosystem metabolism in two north temperate lakes. Limnology and Oceanography 57: 1689–1700.

    Article  Google Scholar 

  73. Vis, C., C. Hudon, R. Carignan & P. Gagnon, 2007. Spatial analysis of production by macrophytes, phytoplankton and epiphyton in a large river system under different water-level conditions. Ecosystems 10: 293–310.

    Article  Google Scholar 

  74. Wagle, P., X. Xiao, M. S. Torn, D. R. Cook, R. Matamala, M. L. Fischer, C. Jin, J. Dong & C. Biradar, 2014. Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought. Remote Sensing of Environment 152: 1–14.

    Article  Google Scholar 

  75. Westlake, D. F., 1982. The primary productivity of water plants. In Symoens, J. J., S. S. Hooper & P. Compére (eds), Studies on Aquatic Vascular Plants. Royal Botanical Society of Belgium, Brussels: 165–180.

    Google Scholar 

  76. Wetzel, R. G., 1964. Primary productivity of aquatic macrophytes. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 15: 426–436.

    Google Scholar 

  77. Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Academic Press, San Diego.

    Google Scholar 

  78. Zimmer, K. D., W. O. Hobbs, L. M. Domine, B. R. Herwig, M. A. Hanson & J. B. Cotner, 2016. Uniform carbon fluxes in shallow lakes in alternative stable states. Limnology and Oceanography 61: 330–340.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Thomas Hintze for technical help, Barbara Stein, Grit Siegert, Elke Zwirnmann, Antje Lüder, Hans-Jürgen Exner, Thomas Rossoll and Jörg Gelbrecht for help in laboratory analyses, Cécile Perillon for her contribution in the duckweed removal, and Iman Charara for her help with graphical software. We also thank Thomas Mehner and the students of the IGB course ‘Scientific Writing’ as well as Soren Brothers for their helpful remarks in improving this manuscript and the language check. This study was part of the LandScales (http://landscales.de) project that was funded through the Pact for Innovation and Research of the Gottfried Wilhelm Leibniz association. The LandScales team is acknowledged for assistance and helpful discussions throughout the project. Lastly, we thank three anonymous reviewers and the editor Katya Kovalenko for their valuable comments on earlier versions of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Garabet Kazanjian.

Additional information

Handling editor: Katya E. Kovalenko

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 791 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kazanjian, G., Flury, S., Attermeyer, K. et al. Primary production in nutrient-rich kettle holes and consequences for nutrient and carbon cycling. Hydrobiologia 806, 77–93 (2018). https://doi.org/10.1007/s10750-017-3337-6

Download citation

Keywords

  • Anoxia
  • Gross primary production
  • Macrophytes
  • Periphyton
  • Phosphorus
  • Potholes
  • Depressional wetlands
  • Ponds