Biomass HotSpot distribution model and spatial interaction of two exploited species of horse mackerel in the south-central Mediterranean Sea

  • Milisenda Giacomo
  • Garofalo Germana
  • Fezzani Samia
  • Rjeibi Okbi
  • Jarboui Othman
  • Chemmam Bachra
  • Ceriola Luca
  • Bonanno Angelo
  • Genovese Simona
  • Basilone Gualtiero
  • Mifsud Roberta
  • Lauria Valentina
  • Gristina Michele
  • Colloca Francesco
  • Fiorentino Fabio
CENTRAL MEDITERRANEAN ECOSYSTEMS
  • 67 Downloads

Abstract

Trachurus trachurus and Trachurus mediterraneus play an important role in the marine ecosystem and represent an important source of income for local economies related to fishery. This study aimed to improve the knowledge on the spatial distribution and habitat requirements of these two horse mackerels in the south-central Mediterranean Sea (Strait of Sicily) by applying specie distribution models. Species’ biomass HotSpots, areas where the highest abundances are concentrated, were modelled as a function of physical and oceanographic parameters. Predictive distribution maps were produced to identify species-specific spatial patterns and possible overlapping in the distribution areas of the two congeneric species. Depth, bottom salinity, bottom sea temperature, sea surface temperature variation and slope were the main drivers for horse mackerels habitat suitability. Predictive distribution maps revealed a clear spatial segregation between biomass HotSpots of the two species, which depends on complex abiotic and biotic relationships. Since horse mackerels are the main component of discards produced by deep rose shrimp fishery in the Strait of Sicily and due to the importance of discard reduction in the current fishery policies, the results can provide important information for setting up spatial-based management strategies for the Strait of Sicily fisheries aimed in particular at minimizing unwanted by-catches.

Keywords

Species distribution model Trachurus trachurus Trachurus mediterraneus Competition Habitat suitability 

Notes

Acknowledgments

Surveys were co-funded by the Consiglio Nazionale delle Ricerche and the European Union through the Data Collection Framework (DCF—Reg. Ce. No. 199/2008, No. 665/2008 and Commission Decision No. 949/2008). This study was also supported by the FAO Project MedSudMed ‘‘Assessment and Monitoring of the Fishery Resources and the Ecosystems in the Straits of Sicily’’, funded by the Italian Ministry MiPAAF and co-funded by the Directorate-General for Maritime Affairs and Fisheries of the European Commission (DG MARE). The Masters of the R/V “Hannibal”, the R/V “G. Dallaporta” and the R/V “S. Anna” and all their crew are thanked for their work.

References

  1. Alegria Hernandez, V., 1983. Assessment of pelagic fish abundance alog the eastern Adriatic coast with special regard to sardine (Sardina pilchardus) population [Yugoslavia]. Acta adriatica v. 24.Google Scholar
  2. Algar, A. C., H. M. Kharouba, E. R. Young & J. T. Kerr, 2009. Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography 32: 22–33.CrossRefGoogle Scholar
  3. Anton-Pardo, M. & X. Armengol, 2012. Effects of salinity and water temporality on zooplankton community in coastal Mediterranean ponds. Estuarine, Coastal and Shelf Science 114: 93–99, http://www.sciencedirect.com/science/article/pii/S0272771411003647.
  4. Barra, M., P. Petitgas, A. Bonanno, S. Somarakis, M. Woillez, A. Machias, S. Mazzola, G. Basilone & M. Giannoulaki, 2015. Interannual changes in biomass affect the spatial aggregations of anchovy and sardine as evidenced by Geostatistical and spatial indicators. PLoS ONE 10: 1–22.Google Scholar
  5. Bartolino, V., L. Maiorano & F. Colloca, 2011. A frequency distribution approach to hotspot identification. Population Ecology 53: 351–359.CrossRefGoogle Scholar
  6. Bascompte, J., 2009. Mutualistic networks. Frontiers in Ecology and the Environment 7: 429–436.CrossRefGoogle Scholar
  7. Bauchot, M. & J. Hureau, 1986. Sparidae. In Whitehead, P., M. Bauchot, J. Hureau, J. Nielsen & E. Tortonese (eds.), Fishes of the North-eastern Atlantic and Mediterranean, Vol. II. UNESCO, U.K.: 883–907.Google Scholar
  8. Béranger, K., L. Mortier, G. P. Gasparini, L. Gervasio, M. Astraldi & M. Crépon, 2004. The dynamics of the Sicily Strait: a comprehensive study from observations and models. Deep-Sea Research Part II: Topical Studies in Oceanography 51: 411–440.CrossRefGoogle Scholar
  9. Bertrand, J. A., L. Gil De Sola, C. Papaconstantinou, G. Relini & A. Souplet, 2002. The general specifications of the MEDITS surveys. Scientia Marina 66: 9–17.CrossRefGoogle Scholar
  10. Bini, G., 1968. Atlante dei pesci delle coste italiane. Mondo Sommerso, Milano.Google Scholar
  11. Bonanno, A., F. Placenti, G. Basilone, R. Mifsud, S. Genovese, B. Patti, M. Di Bitetto, S. Aronica, M. Barra, G. Giacalone, R. Ferreri, I. Fontana, G. Buscaino, G. Tranchida, E. Quinci & S. Mazzola, 2014. Variability of water mass properties in the strait of sicily in summer period of 1998–2013. Ocean Science 10: 759–770.CrossRefGoogle Scholar
  12. Brooker, R. W., 2006. Plant-plant interactions and environmental change: tansley review. New Phytologist 171: 271–284.CrossRefPubMedGoogle Scholar
  13. Brooker, R. W. & T. V. Callaghan, 1998. The balance between positive and negative plant interactions and its relationship to environmental gradients: a model. Oikos [Nordic Society Oikos, Wiley] 81: 196–207, http://www.jstor.org/stable/3546481.
  14. Callaway, R. M., R. W. Brooker, P. Choler, Z. Kikvidze, C. J. Lortie, R. Michalet, L. Paolini, F. I. Pugnaire, B. Newingham, E. T. Aschehoug, C. Armas, D. Kikodze & B. J. Cook, 2002. Positive interactions among alpine plants increase with stress. Nature 417: 844–848. doi: 10.1038/nature00812.CrossRefPubMedGoogle Scholar
  15. Carpentieri, P., F. Colloca & G. D. Ardizzone, 2005. Day-night variations in the demersal nekton assemblage on the Mediterranean shelf-break. Estuarine, Coastal and Shelf Science 63: 577–588.CrossRefGoogle Scholar
  16. Choler, P., R. Michalet & R. M. Callaway, 2001. Facilitation and competition on gradients in alpine plant communities. Ecology 82: 3295–3308.CrossRefGoogle Scholar
  17. Colloca, F., P. Carpentieri, E. Balestri & G. D. Ardizzone, 2004. A critical habitat for Mediterranean fish resources: shelf-break areas with Leptometra phalangium (Echinodermata: Crinoidea). Marine Biology 145: 1129–1142.CrossRefGoogle Scholar
  18. Colloca, F., G. Garofalo, I. Bitetto, M. T. Facchini, F. Grati, A. Martiradonna, G. Mastrantonio, N. Nikolioudakis, F. Ordinas, G. Scarcella, G. Tserpes, M. P. Tugores, V. Valavanis, R. Carlucci, F. Fiorentino, M. C. Follesa, M. Iglesias, L. Knittweis, E. Lefkaditou, G. Lembo, C. Manfredi, E. Massutí, M. L. Pace, N. Papadopoulou, P. Sartor, C. J. Smith & M. T. Spedicato, 2015. The seascape of demersal fish nursery areas in the North Mediterranean Sea, a first step towards the implementation of spatial planning for trawl fisheries. PLoS ONE Public Library of Science 10: e0119590, http://dx.doi.org/10.1371%2Fjournal.pone.0119590.
  19. Davis, A. J., L. S. Jenkinson, J. H. Lawton, B. Shorrocks & S. Wood, 1998. Making mistakes when predicting shifts in species range in response to global warming. Nature 391: 783–786. doi: 10.1038/35842.CrossRefPubMedGoogle Scholar
  20. Demirel, N. & A. Yüksek, 2014. Seasonal distribution of Trachurus mediterraneus (Steindachner, 1868) in the Golden Horn Estuary, İstanbul. Turkish Journal of Zoology 38: 361–368.CrossRefGoogle Scholar
  21. Deudero, S., 2001. Interspecific trophic relationships among pelagic fish species underneath FADs. Journal of Fish Biology 58: 53–67, http://www.idealibrary.com.
  22. Di Lorenzo, M., T. V. Fernández, F. Badalamenti, P. Guidetti, R. M. Starr, V. M. Giacalone, A. Di Franco & G. D’Anna, 2016. Diel activity and variability in habitat use of white sea bream in a temperate marine protected area. Marine Environmental Research 116: 1–9.CrossRefPubMedGoogle Scholar
  23. Drago, A., R. Sorgente & A. Olita, 2010. Sea temperature, salinity and total velocity climatological fields for the south–central Mediterranean Sea. Gcp/Rer/010/Ita/Msm-Td-14 35.Google Scholar
  24. Druon, J.-N., F. Fiorentino, M. Murenu, L. Knittweis, F. Colloca, C. Osio, B. Mérigot, G. Garofalo, A. Mannini, A. Jadaud, M. Sbrana, G. Scarcella, G. Tserpes, P. Peristeraki, R. Carlucci, & J. Heikkonen, 2015. Modelling of European hake nurseries in the Mediterranean Sea: an ecological niche approach. Progress in Oceanography 130: 188–204, http://linkinghub.elsevier.com/retrieve/pii/S0079661114001803.
  25. Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. T. Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberon, S. Williams, M. S. Wisz & N. E. Zimmermann, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.CrossRefGoogle Scholar
  26. FAO. 2016. The state of mediterranean and black sea fisheries. In General Fisheries Commission for the Mediterranean. Rome, Italy.Google Scholar
  27. Ferrier, S. & A. Guisan, 2006. Spatial modelling of biodiversity at the community level. Journal of Applied Ecology 43: 393–404.CrossRefGoogle Scholar
  28. Fiorentino, F., G. Garofalo, A. De Santi, G. Bono, G. B. Giusto & G. Norrito, 2003. Spatio-temporal distribution of recruits (0 group) of Merluccius merluccius and Phycis blennoides (Pisces, Gadiformes) in the Strait of Sicily (Central Mediterranean). Hydrobiologia 503: 223–236.CrossRefGoogle Scholar
  29. Fiorentino, F., G. Garofalo, M. Gristina, S. Gancitano & G. Norrito, 2004. Some relevant information on the spatial distribution of demersal resources, benthic biocoenoses and fishing pressure in the Strait of Sicily. Marine Living Resources Assessment 50–66.Google Scholar
  30. Fischer, W., M. Schneider & M. Bauchot, 1987. Guide Fao d’Identification des Espèces pour les Besoins de la Pêche. FAO, Roma.Google Scholar
  31. Foote, K. G., H. P. Knudsen, G. Vestnes, D. N. MacLennan, & E. J. Simmonds, 1987. Calibration of acoustic instruments for fish density estimation: A practical guide. ICES Cooperative Research Report, 144. 82 pp.Google Scholar
  32. Froese, R., & D. Pauly, 2003. FishBase. World Wide Web electronic publication. Eds. 2003., www.fishbase.org.
  33. Futuyma, D. J. & G. Moreno, 1988. The evolution of ecological specialization. Annual Review of Ecology, Evolution Systematics 19: 207–233.CrossRefGoogle Scholar
  34. Garofalo, G., L. Ceriola, M. Gristina, F. Fiorentino & R. Pace, 2010. Nurseries, spawning grounds and recruitment of Octopus vulgaris in the Strait of Sicily, central Mediterranean Sea. ICES Journal of Marine Science 67: 1363–1371.Google Scholar
  35. Garofalo, G., T. Fortibuoni, M. Gristina, M. Sinopoli, & F. Fiorentino, 2011. Persistence and co-occurrence of demersal nurseries in the Strait of Sicily (central Mediterranean): implications for fishery management. Journal of Sea Research Elsevier B.V. 66: 29–38, http://dx.doi.org/10.1016/j.seares.2011.04.008.
  36. Giannoulaki, M., A. Belluscio, F. Colloca, S. Fraschetti, M. Scardi, C. Smith, P. Panayotidis, V. D. Valavanis, & M. T. Spedicato, 2013a. Mediterranean Sensitive Habitats. DG MARE Specific Contract SI2.600741, Final Report. 557 pp.Google Scholar
  37. Giannoulaki, M., M. Iglesias, M. P. Tugores, A. Bonanno, B. Patti, A. De Felice, I. Leonori, J. L. Bigot, V. Tičina, M. M. Pyrounaki, K. Tsagarakis, A. Machias, S. Somarakis, E. Schismenou, E. Quinci, G. Basilone, A. Cuttitta, F. Campanella, J. Miquel, D. Oñate, D. Roos & V. Valavanis, 2013b. Characterizing the potential habitat of European anchovy Engraulis encrasicolus in the Mediterranean Sea, at different life stages. Fisheries Oceanography 22: 69–89.CrossRefGoogle Scholar
  38. Gomez, J. J. & M. H. Cassini, 2015. Environmental predictors of habitat suitability and biogeographical range of Franciscana dolphins (Pontoporia blainvillei). Global Ecology and Conservation Elsevier B.V. 3: 90–99, http://dx.doi.org/10.1016/j.gecco.2014.11.007.
  39. Guisan, A. & W. Thuiller, 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993–1009.CrossRefGoogle Scholar
  40. Guisan, A., R. Tingley, J. B. Baumgartner, I. Naujokaitis-Lewis, P. R. Sutcliffe, A. I. T. Tulloch, T. J. Regan, L. Brotons, E. Mcdonald-Madden, C. Mantyka-Pringle, T. G. Martin, J. R. Rhodes, R. Maggini, S. A. Setterfield, J. Elith, M. W. Schwartz, B. A. Wintle, O. Broennimann, M. Austin, S. Ferrier, M. R. Kearney, H. P. Possingham & Y. M. Buckley, 2013. Predicting species distributions for conservation decisions. Ecology Letters 16: 1424–1435.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hain, J., M. Hyman, R. Kenney & H. Winn, 1985. The role of cetaceans in the shelf-edge region of the north-eastern United States. Marine Fisheries Review 47: 13–17.Google Scholar
  42. Herman, Y., 1972. Quaternary Eastern Mediterranean Sediments: Micropaleontology and Climatic Records. Hutchinson and Ross, Strondburg.Google Scholar
  43. ICES, 2007. Report of the workshop on testing the entrainment hypothesis (WKTEST).Google Scholar
  44. Keller, S., V. Bartolino, M. Hidalgo, I. Bitetto, L. Casciaro, D. Cuccu, A. Esteban, C. Garcia, G. Garofalo, M. Josephides, A. Jadaud, E. Lefkaditou, P. Maiorano, C. Manfredi, B. Marceta, E. Massutì, R. Micallef, P. Peristeraki, G. Relini, P. Sartor, M. T. Spedicato, G. Tserpes, & A. Quetglas, 2016. Large-scale spatio-temporal patterns of mediterranean cephalopod diversity. PLoS ONE Public Library of Science 11: e0146469, http://dx.doi.org/10.1371%2Fjournal.pone.0146469.
  45. Knittweis, L., E. Arneri, S. Ben Meriem, M. Dimech, F. Fiorentino, V. Gancitano, O. Jarboui, K. B. Mbarek, & L. Ceriola, 2013. Stock status and potential yield of deep water rose shrimp (Parapenaeus longirostris, Lucas 1846) in the south-central Mediterranean Sea. .Google Scholar
  46. Krebs, C. J., 2009. Ecology: The Experimental Analysis of Distribution and Abundance. Pearson, Cloth.Google Scholar
  47. Lauria, V., M. Gristina, M. J. Attrill, F. Fiorentino & G. Garofalo, 2015. Predictive habitat suitability models to aid conservation of elasmobranch diversity in the central Mediterranean Sea. Scientific Reports Nature Publishing Group 5: 13245, http://www.nature.com/doifinder/10.1038/srep13245.
  48. Levi, D., S. Ragonese, M. G. Andreoli, G. Norrito, P. Rizzo, G. B. Giusto, S. Gancitano, G. Sinacori, G. Bono & G. Garofalo, 1998. Sintesi delle ricerche sulle risorse demersali dello Stretto di Sicilia (Mediterraneo centrale) negli anni 1985–1997 svolte nell’ambito della legge 41/82. Biologia Marina Mediterranea 5: 130–139.Google Scholar
  49. Levins, R., 1968. Evolution in Changing Environments: Some Theoretical Explorations. (MPB-2). Princeton University Press, Princeton.Google Scholar
  50. Lloris, D. & T. Moreno, 1995. Distribution model and association in 3 pelagic congeneric species (Trachurus Spp) present in the Iberic Mediterranean-Sea. Scientia Marina 59: 399–403.Google Scholar
  51. Lortie, C. J., R. W. Brooker, P. Choler, Z. Kikvidze, R. Michalet, F. I. Pugnaire & R. M. Callaway, 2004. Rethinking plant community theory. Oikos 107: 433–438.CrossRefGoogle Scholar
  52. MacArthur, R. & R. Levins, 1964. Competition, habitat selection, and character displacement in a patchy environment. Proceedings of the National Academy of Sciences of the United States of America 51: 1207–1210.CrossRefPubMedPubMedCentralGoogle Scholar
  53. MacLennan D. N., P. G. Fernandes, & J. Dalen, 2002. A consistent approach to definitions and symbols in fisheries acoustics. ICES Journal of Marine Science 59: 365–369.Google Scholar
  54. Maher, S. P., C. F. Randin, A. Guisan & J. M. Drake, 2014. Pattern-recognition ecological niche models fit to presence-only and presence-absence data. Methods in Ecology and Evolution 5: 761–770.CrossRefGoogle Scholar
  55. McArthur, M. A., B. P. Brooke, R. Przeslawski, D. A. Ryan, V. L. Lucieer, S. Nichol, A. W. McCallum, C. Mellin, I. D. Cresswell & L. C. Radke, 2010. On the use of abiotic surrogates to describe marine benthic biodiversity. Estuarine, Coastal and Shelf Science Elsevier Ltd 88: 21–32. doi: 10.1016/j.ecss.2010.03.003.CrossRefGoogle Scholar
  56. Meier, E. S., T. C. Edwards, F. Kienast, M. Dobbertin & N. E. Zimmermann, 2011. Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica L. Journal of Biogeography 38: 371–382.CrossRefGoogle Scholar
  57. Milisenda, G., S. Vitale, D. Massi, M. Enea, V. Gancitano, G. B. Giusto, C. Badalucco, M. Gristina, G. Garofalo & F. Fiorentino, 2017. Spatio-temporal composition of discard associated with the deep water rose shrimp fisheries (Parapenaeus longirostris, Lucas 1846) in the south-central Mediterranean Sea. Mediterranean Marine Science 18: 53–63.CrossRefGoogle Scholar
  58. Murase, H., H. Nagashima, S. Yonezaki, R. Matsukura & T. Kitakado, 2009. Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of pelagic fish and krill: A case study in Sendai Bay, Japan. ICES Journal of Marine Science 66: 1417–1424.CrossRefGoogle Scholar
  59. Paradinas, I., D. Conesa, M. Pennino, F. Muñoz, A. Fernández, A. López-Quílez & J. Bellido, 2015. Bayesian spatio-temporal approach to identifying fish nurseries by validating persistence areas. Marine Ecology Progress Series 528: 245–255, http://www.int-res.com/abstracts/meps/v528/p245-255/.
  60. Petitgas, P., 1998. Biomass-dependent dynamics of fish spatial distributions characterized by geostatistical aggregation curves. ICES Journal of Marine Science: Journal du Conseil 55: 443–453.CrossRefGoogle Scholar
  61. Petitgas, P., M. Woillez, M. Doray & J. Rivoirard, 2016. A geostatistical definition of hotspots for fish spatial distributions. Mathematical Geosciences 48: 65–77.CrossRefGoogle Scholar
  62. Pidwirny, M., 2006. Introduction to the Biosphere. Fundamentals of Physical Geography, chapter 9. Second Edition. International Journal of Geosciences.Google Scholar
  63. Pittman, S. J. & K. A. Brown, 2011. Multi-scale approach for predicting fish species distributions across coral reef seascapes. PLoS ONE 6Google Scholar
  64. Planque, B., C. Loots, P. Petitgas, U. Lindstrøm & S. Vaz, 2011. Understanding what controls the spatial distribution of fish populations using a multi-model approach. Fisheries Oceanography 20: 1–17.CrossRefGoogle Scholar
  65. Ragonese, S., F. Fiorentino, G. Garofalo, M. Gristina, D. Levi, S. Gancitano, G. B. Giusto, P. Rizzo & G. Sinacori, 2004. Distribution, abundance and biological features of picarel (Spicara flexuosa), Mediterranean (Thrachurus mediterraneus) and Atlantic (T. trachurus) horse mackerel based on experimental bottom-trawl data (MEDITS, 1994-2002) in the Strait of Sicily. MedSudMed Technical Documents No.5 100–114.Google Scholar
  66. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  67. Richardson, A. & D. S. Schoeman, 2004. Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305: 1609–1612.CrossRefPubMedGoogle Scholar
  68. Rumolo, P., G. Basilone, E. Fanelli, M. Calabrò, S. Genovese, S. Gherardi, R. Ferreri, S. Mazzola & A. Bonanno, 2017. Linking spatial distribution and feeding behaviour of Atlantic horse mackerel (Trachurus trachurus) in the Strait of Sicily (Central Mediterranean Sea). Journal of Sea Research Elsevier B.V, http://dx.doi.org/10.1016/j.seares.2017.01.002.
  69. Saraux, C., J.-M. Fromentin, J.-L. Bigot, J.-H. Bourdeix, M. Morfin, D. Roos, E. Van Beveren & N. Bez, 2014. Spatial structure and distribution of small pelagic fish in the northwestern Mediterranean Sea. PloS one 9: e111211, http://www.ncbi.nlm.nih.gov/pubmed/25375656%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4222880.
  70. Sbrocco, E. J. & P. H. Barber, 2013. MARSPEC: Ocean climate layers for marine spatial ecology. Ecology 94: 979. doi: 10.1890/12-1358.1.CrossRefGoogle Scholar
  71. Simmonds, J. & D. MacLennan, 2005. Fisheries acoustics: Theory and practice. Blackwell Science, Oxford, 437 pp.Google Scholar
  72. Sinopoli, M., F. Badalamenti, G. D’Anna, M. Gristina & F. Andaloro, 2011. Size influences the spatial distribution and fish-aggregating device use of five Mediterranean fish species. Fisheries Management and Ecology 18(6): 456–466.CrossRefGoogle Scholar
  73. Skov, H. & J. Durinck, 1998. Constancy of frontal aggregations of seabirds at the shelf break in the Skagerrak. Journal of Sea Research 39: 305–311, http://www.sciencedirect.com/science/article/pii/S1385110198000033.
  74. Tugores, M. & M. Iglesias, 2010. interannual distribution of the European anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in the western Mediterranean, and sampling uncertainty. ICES Journal of Marine Science 67(8): 1574–1586, http://icesjms.oxfordjournals.org/content/67/8/1574.short.
  75. Van Dam, N. M., 2009. How plants cope with biotic interactions. Plant Biology 11: 1–5.PubMedGoogle Scholar
  76. Vanney, J. & D. Stanley, 1983. Shelf-break Physiography: An Overview Society of Economic Paleontologist and Mineralogist. Tulsa, Okla., USA.Google Scholar
  77. Whitehead, P. J. P., 1986. Fishes of the North-eastern Atlantic and the Mediterranean. UNESCO, https://books.google.mn/books?id=kGYWAQAAIAAJ.
  78. Wilen, J. E., 2004. Spatial management of fisheries. Marine Resource Economics 19: 7–19, http://ageconsearch.umn.edu/bitstream/123456789/7347/1/19010007.pdf.
  79. Williams, A., J. A. Koslow & P. R. Last, 2001. Diversity, density and community structure of the demersal fish fauna of the continental slope off Western Australia (20 to 35°S). Marine Ecology Progress Series 212: 247–263.CrossRefGoogle Scholar
  80. Wisz, M. S., J. Pottier, W. D. Kissling, L. Pellissier, J. Lenoir, C. F. Damgaard, C. F. Dormann, M. C. Forchhammer, J. A. Grytnes, A. Guisan, R. K. Heikkinen, T. T. Høye, I. Kühn, M. Luoto, L. Maiorano, M. C. Nilsson, S. Normand, E. Öckinger, N. M. Schmidt, M. Termansen, A. Timmermann, D. A. Wardle, P. Aastrup & J. C. Svenning, 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews 88: 15–30.CrossRefPubMedGoogle Scholar
  81. Wood, S. N., 2006. Generalized Additive Models: An Introduction with R. Taylor & Francis.Google Scholar
  82. Zuur, A. F., E. N. Ieno & C. S. Elphick, 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1: 3–14, http://doi.wiley.com/10.1111/j.2041-210X.2009.00001.x.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Milisenda Giacomo
    • 1
  • Garofalo Germana
    • 1
  • Fezzani Samia
    • 2
  • Rjeibi Okbi
    • 2
  • Jarboui Othman
    • 3
  • Chemmam Bachra
    • 2
  • Ceriola Luca
    • 4
  • Bonanno Angelo
    • 5
  • Genovese Simona
    • 5
  • Basilone Gualtiero
    • 5
  • Mifsud Roberta
    • 6
  • Lauria Valentina
    • 1
  • Gristina Michele
    • 1
  • Colloca Francesco
    • 1
  • Fiorentino Fabio
    • 1
  1. 1.CNR-IAMCMazara Del ValloItaly
  2. 2.INSTM – Centre de La GouletteLa GouletteTunisia
  3. 3.Institut National des Sciences, et Technologies de la Mer (INSTM) – centre de SfaxSfaxTunisia
  4. 4.FAO MedSudMedRomeItaly
  5. 5.CNR-IAMCTorretta-GranitolaItaly
  6. 6.Department of Fisheries and AquacultureFisheries Resource UnitVallettaMalta

Personalised recommendations