Skip to main content

Advertisement

Log in

Biological consequences of weak acidification caused by elevated carbon dioxide in freshwater ecosystems

Hydrobiologia Aims and scope Submit manuscript

Abstract

Weak acidification can occur in freshwater ecosystems when free carbon dioxide (CO2) levels increase, which can happen for a variety of reasons. To define the state of knowledge for how weak acidification influences freshwater biota and ecosystems, a review of the primary literature was conducted. Despite few empirical studies focused on weak acidification in the primary literature (~100 studies), some themes have emerged from our literature review. Most studies focused on physiological responses at the organismal level, and fish were the most studied taxa. Animals exhibited reduced individual growth rates, and, in contrast, primary producers demonstrated increased individual and population growth rates. In animals, mortality, sub-lethal injuries, and changes to behaviours were also observed. Negative consequences to reproduction in macrophytes were found. Few studies have focused on population, community, or ecosystem levels, though broad scale studies suggest that weak acidification can limit species community diversity, specifically in invertebrates and fish. Moving forward, researchers need to continue to advance our understanding of the consequences of weak acidification for freshwater biota. Furthermore, priority should be placed on research that can evaluate the potential for weak acidification in freshwater to lead to changes in ecological regimes or economical outcomes, such as fisheries collapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Abbey-Lambertz, M., A. Ray, M. Layhee, C. Densmore, A. Sepulveda, J. Gross & B. Watten, 2014. Suppressing bullfrog larvae with carbon dioxide. Journal of Herpetology 48: 59–66.

    Article  Google Scholar 

  • Allison, V., D. W. Dunham & H. H. Harvey, 1992. Low pH alters response to food in the crayfish Cambarus bartoni. Canadian Journal of Zoology 70: 2416–2420.

    Article  Google Scholar 

  • Alto, B. W., S. P. Yanoviak, L. P. Lounibos & B. G. Drake, 2005. Effects of elevated atmospheric CO2 on water chemistry and mosquito (Diptera: Culicidae) growth under competitive conditions in container habitats. Florida Entomologist 88: 372–382.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arneth, A., S. P. Harrison, S. Zaehle, K. Tsigaridis, S. Menon, P. J. Bartlein, J. Feichter, A. Korhola, M. Kulmala, D. O’Donnell, G. Schurgers, S. Sorvari & T. Vesala, 2010. Terrestrial biogeochemical feedbacks in the climate system. Nature Geoscience 3: 525–532.

    Article  CAS  Google Scholar 

  • Bernier, N. J. & D. J. Randall, 1998. Carbon dioxide anaesthesia in rainbow trout: effects of hypercapnic level and stress on induction and recovery from anaesthetic treatment. Journal of Fish Biology 52: 621–637.

    Google Scholar 

  • Beyers, D. W., J. A. Rice, W. H. Clements & C. J. Henry, 1999. Estimating physiological cost of chemical exposure: integrating energetics and stress to quantify toxic effects in fish. Canadian Journal of Fisheries and Aquatic Sciences 822: 814–822.

    Article  Google Scholar 

  • Blinn, D. W. & M. W. Sanderson, 1989. Aquatic insects in Montezuma Well, Arizona, USA: a travertine spring mound with high alkalinity and dissolved carbon dioxide. Great Basin Naturalist 49: 85–89.

    Google Scholar 

  • Bogard, M. J. & P. A. del Giorgio, 2016. The role of metabolism in modulating CO2 fluxes in boreal lakes. Global Biogeochemical Cycles 30: 1509–1525.

    Article  CAS  Google Scholar 

  • Boucher, P., D. W. Blinn & D. B. Johnson, 1984. phytoplankton ecology in an unusually stable environment (Montezuma Well, Arizona, U.S.A.). Hydrobiologia 119: 149–160.

    Article  CAS  Google Scholar 

  • Brauner, C. J. & D. W. Baker, 2009. Patterns of acid-base regulation during exposure to hypercarbia in fishes. In Glass, M. L. & S. C. Wood (eds), Cardio-Respiratory Control in Vertebrates: Comparative and Evolutionary Aspects. Springer, Berlin: 43–63.

    Chapter  Google Scholar 

  • Busk, M., E. H. Larsen & F. B. Jensen, 1997. Acid-base regulation in tadpoles of Rana catesbeiana exposed to environmental hypercapnia. Journal of Experimental Biology 200: 2507–2512.

    CAS  PubMed  Google Scholar 

  • Butman, D. & P. A. Raymond, 2011. Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geoscience 4: 839–842.

    Article  CAS  Google Scholar 

  • Cameron, J. N., 1978. Effects of hypercapnia on blood acid-base status, NaCl fluxes, and trans-gill potential in freshwater blue craps, Callineactes sapidus. Journal of Comparative Physiology B 123: 137–141.

    Article  CAS  Google Scholar 

  • Clements, J. C. & H. L. Hunt, 2015. Marine animal behaviour in a high CO2 ocean. Marine Ecology Progress Series 536: 259–279.

    Article  CAS  Google Scholar 

  • Cole, G. A. & W. T. Barry, 1973. Montezuma Well, Arizona, as a habitat. Arizona-Nevada Academy of Science 8: 7–13.

    Article  Google Scholar 

  • Cole, J. J. & N. F. Caraco, 2001. Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Marine & Freshwater Research 52: 101–110.

    Article  CAS  Google Scholar 

  • Cole, J. J., N. F. Caraco, G. W. Kling & T. K. Kratz, 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265: 1568–1570.

    Article  CAS  PubMed  Google Scholar 

  • Cory, R. M., C. P. Ward, B. C. Crump & G. W. Kling, 2014. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345: 925–928.

    Article  CAS  PubMed  Google Scholar 

  • Crawford, J. T., E. H. Stanley, M. M. Dornblaser & R. G. Striegl, 2017. CO2 time series patterns in contrasting headwater streams of North America. Aquatic Sciences 79: 473–486.

    Article  CAS  Google Scholar 

  • Davidson, F. A., 1933. Temporary high carbon dioxide content in an Alaskan stream at sunset. Ecology 14: 238–240.

    Article  Google Scholar 

  • Dennis, C. E., S. Adhikari & C. D. Suski, 2015a. Molecular and behavioral responses of early-life stage fishes to elevated carbon dioxide. Biological Invasions 17: 3133–3151.

    Article  Google Scholar 

  • Dennis, C. E., D. F. Kates, M. R. Noatch & C. D. Suski, 2015b. Molecular responses of fishes to elevated carbon dioxide. Comparative Biochemistry and Physiology, Part A: Molecular & Integrative Physiology 187: 224–231.

    Article  CAS  Google Scholar 

  • Donaldson, M. R., J. J. Amberg, S. Adhikari, A. Cupp, N. R. Jensen, J. Romine, A. Wright, M. P. Gaikowski & C. D. Suski, 2016. Carbon dioxide as a tool to deter the movement of invasive Bigheaded Carps. Transactions of the American Fisheries Society 145: 657–670.

    Article  CAS  Google Scholar 

  • Elvidge, C. K. & G. E. Brown, 2014. Predation costs of impaired chemosensory risk assessment on acid-impacted juvenile Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 71: 756–762.

    Article  CAS  Google Scholar 

  • Fabry, V. J., B. A. Seibel, R. A. Feely & J. C. Orr, 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65: 414–432.

    Article  CAS  Google Scholar 

  • Fivelstad, S., K. Kvamme, S. Handeland, M. Fivelstad, A. B. Olsen & C. D. Hosfeld, 2015. Growth and physiological models for Atlantic salmon (Salmo salar L.) parr exposed to elevated carbon dioxide concentrations at high temperature. Aquaculture 436: 90–94.

    Article  Google Scholar 

  • Fivelstad, S., A. B. Olsen, H. Kløften, H. Ski & S. Stefansson, 1999. Effects of carbon dioxide on Atlantic salmon (Salmo salar L.) smolts at constant pH in bicarbonate rich freshwater. Aquaculture 178: 171–187.

    Article  Google Scholar 

  • Fivelstad, S., R. Waagbø, S. F. Zeitz, A. Camilla, D. Hosfeld & A. Berit, 2003. A major water quality problem in smolt farms: combined effects of carbon dioxide, reduced pH and aluminium on Atlantic salmon (Salmo salar L.) smolts: physiology and growth. Aquaculture 215: 339–357.

    Article  CAS  Google Scholar 

  • Fivelstad, S., R. Waagbø, S. Stefansson & A. B. Olsen, 2007. Impacts of elevated water carbon dioxide partial pressure at two temperatures on Atlantic salmon (Salmo salar L.) parr growth and haematology. Aquaculture 269: 241–249.

    Article  CAS  Google Scholar 

  • Gelwicks, K. R., D. J. Zafft & J. P. Bobbitt, 1998. Efficacy of carbonic acid as an anesthetic for rainbow trout. North American Journal of Fisheries Management 18: 432–438.

    Article  Google Scholar 

  • Good, C., J. Davidson, C. Welsh, K. Snekvik & S. Summerfelt, 2010. Aquacultural Engineering The effects of carbon dioxide on performance and histopathology of rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems. Aquacultural Engineering 42: 51–56.

    Article  Google Scholar 

  • Haddaway, N. R., A. M. Collins, D. Coughlin & S. Kirk, 2015a. The role of Google Scholar in evidence reviews and its applicability to grey literature searching. PLoS ONE 10: e0138237.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haddaway, N., P. Woodcock, N. R. Haddaway, P. Woodcock, B. Macura & A. Collins, 2015b. Making literature reviews more reliable through application of lessons from systematic reviews. Conservation Biology 29: 1596–1605.

    Article  CAS  PubMed  Google Scholar 

  • Hannan, K. D., J. D. Jeffrey, C. T. Hasler & C. D. Suski, 2016a. Physiological responses of three species of unionid mussels to intermittent exposure to elevated carbon dioxide. Conservation Physiology 4: 1–13.

    Article  Google Scholar 

  • Hannan, K. D., J. D. Jeffrey, C. T. Hasler & C. D. Suski, 2016b. Physiological effects of short- and long-term exposure to elevated carbon dioxide on a freshwater mussel, Fusconaia flava. Canadian Journal of Fisheries and Aquatic Sciences 73: 1538–1546.

    Article  CAS  Google Scholar 

  • Hannan, K. D., J. D. Jeffrey, C. T. Hasler & C. D. Suski, 2016c. The response of two species of unionid mussels to extended exposure to elevated carbon dioxide. Comparative Biochemistry and Physiology A: Molecular and Integrative Physiology 201: 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Hasler, C. T., D. Butman, J. D. Jeffrey & C. D. Suski, 2016a. Freshwater biota and rising pCO2. Ecology Letters 19: 98–108.

    Article  PubMed  Google Scholar 

  • Hasler, C. T., S. R. Midway, J. D. Jeffrey, J. A. Tix, C. Sullivan & C. D. Suski, 2016b. Exposure to elevated pCO2 alters post-treatment diel movement patterns of largemouth bass over short time scales. Freshwater Biology 61: 1590–1600.

    Article  CAS  Google Scholar 

  • Hasler, C. T., K. D. Hannan, J. D. Jeffrey & C. D. Suski, in press. Valve gaping behaviour of three species of freshwater mussels exposed to elevated carbon dioxide. Environmental Science and Pollution Research 24: 15567–15575.

  • Heisler, N., G. Forcht, G. R. Ultsch & J. F. Anderson, 1982. Acid-base regulation in response to environmental hypercapnia in two aquatic salamanders, Siren lacertina and Amphiuma means. Respiration Physiology 49: 141–158.

    Article  CAS  PubMed  Google Scholar 

  • Hosfeld, C. D., A. Engevik, T. Mollan, T. M. Lunde, R. Waagbø, A. B. Olsen, O. Breck, S. Stefansson & S. Fivelstad, 2008. Long-term separate and combined effects of environmental hypercapnia and hyperoxia in Atlantic salmon (Salmo salar L.) smolts. Aquaculture 280: 146–153.

    Article  Google Scholar 

  • Ishimatsu, A., M. Hayashi & T. Kikkawa, 2008. Fishes in high-CO2, acidified oceans. Marine Ecology Progress Series 373: 295–302.

    Article  CAS  Google Scholar 

  • Jacinthe, P. A., R. Lal, L. B. Owens & D. L. Hothem, 2004. Transport of labile carbon in runoff as affected by land use and rainfall characteristics. Soil & Tillage Research 77: 111–123.

    Article  Google Scholar 

  • Jeffrey, J. D., K. D. Hannan, C. T. Hasler & C. D. Suski, 2016. Molecular and whole-animal responses to elevated CO2 exposure in a freshwater mussel. Journal of Comparative Physiology B 187(1): 87–101.

    Article  Google Scholar 

  • Jutfelt, F., K. Bresolin de Souza, A. Vuylsteke & J. Sturve, 2013. Behavioural disturbances in a temperate fish exposed to sustained high-CO2 levels. PLoS ONE 8: e65825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kates, D., C. Dennis, M. R. Noatch & C. D. Suski, 2012. Responses of native and invasive fishes to carbon dioxide: potential for a nonphysical barrier to fish dispersal. Canadian Journal of Fisheries and Aquatic Sciences 69: 1748–1759.

    Article  CAS  Google Scholar 

  • King, J. E., 1943. Survial time of trout in relation to occurrence. The American Midland Naturalist 29: 624–642.

    Article  Google Scholar 

  • Kling, G. W., G. W. Kipphut & M. C. Miller, 1992. The flux of CO2 and CH4 from lakes and rivers in Arctic Alaska. Hydrobiologia 240: 23–36.

    Article  CAS  Google Scholar 

  • Leduc, A. O. H. C., M. C. O. Ferrari, J. M. Kelly & G. E. Brown, 2004. Learning to recognize novel predators under weakly acidic conditions: the effects of reduced pH on acquired predator recognition by juvenile rainbow trout. Chemoecology 14: 107–112.

    Article  Google Scholar 

  • Leduc, A. O. H., E. Roh, C. J. MacNaughton, F. Benz, J. Rosenfeld & G. E. Brown, 2010. Ambient pH and the response to chemical alarm cues in juvenile Atlantic salmon: mechanisms of reduced behavioral responses. Transactions of the American Fisheries Society 139: 117–128.

    Article  CAS  Google Scholar 

  • Leduc, A. O., P. L. Munday, G. E. Brown & M. C. Ferrari, 2013. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis. Philosophical Transactions of the Royal Society of London B 368: 20120447.

    Article  Google Scholar 

  • Lin, P. & L. Guo, 2016. Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes ? Science Reports 6: 1–9.

    Article  Google Scholar 

  • Lopes-Lima, M., A. Lopes, P. Casaca, I. Nogueira, A. Checa & J. Machado, 2009. Seasonal variations of pH, pCO2, pO2, HCO3 and Ca2+ in the haemolymph: implications on the calcification physiology in Anodonta cygnea. Journal of Comparative Physiology B 179: 279–286.

    Article  CAS  Google Scholar 

  • Low-Décarie, E., G. Bell & G. F. Fussmann, 2015. CO2 alters community composition and response to nutrient enrichment of freshwater phytoplankton. Oecologia 177: 875–883.

    Article  PubMed  Google Scholar 

  • Low-Décarie, E., G. F. Fussmann & G. Bell, 2011. The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Global Change Biology 17: 2525–2535.

    Article  Google Scholar 

  • Martens, L. G., P. E. Witten, S. Fivelstad, A. Huysseune, B. Sævareid, V. Vikeså & A. Obach, 2006. Impact of high water carbon dioxide levels on Atlantic salmon smolts (Salmo salar L.): effects on fish performance, vertebrae composition and structure. Aquaculture 261: 80–88.

    Article  Google Scholar 

  • McMahon, R. F., M. A. Mathew, L. R. Shaffer & P. D. Johnson, 1995. Effect of elevated carbon dioxide concentrations on survivorship in zebra mussels (Dreissena polymorpha) and Asian clams (Corbicula fluminea). American Zoologist 34: 319–336.

    Google Scholar 

  • Midway, S. R., C. T. Hasler, T. Wagner & C. D. Suski, in press. Predation of freshwater fish in environments with elevated carbon dioxide. Marine and Freshwater Research. doi:10.1071/MF16156.

  • Miller, G. M., S.-A. Watson, J. M. Donelson, M. I. McCormick & P. L. Munday, 2012. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nature Climate Change 2: 858–861.

    Article  CAS  Google Scholar 

  • Nielson, R. J., C. M. Moffitt & B. J. Watten, 2012. Toxicity of elevated partial pressures of carbon dioxide to invasive New Zealand mudsnails. Environmental Toxicology and Chemistry 31: 1838–1842.

    Article  CAS  PubMed  Google Scholar 

  • Noatch, M. R. & C. D. Suski, 2012. Non-physical barriers to deter fish movements. Environmental Review 20: 1–12.

    Article  Google Scholar 

  • O’Brien, C. & D. W. Blinn, 1999. The endemic spring snail Pyrgulopsis montezumensis in a high CO2 environment: importance of extreme chemical habitats as refugia. Freshwater Biology 42: 225–234.

    Article  Google Scholar 

  • Ochumba, P. B. O., 1990. Massive fish kills within the Nyanza Gulf of Lake Victoria, Kenya. Hydrobiologia 208: 93–99.

    Article  Google Scholar 

  • Orr, J. C., V. J. Fabry, O. Aumont, L. Bopp, S. C. Doney, R. A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R. M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R. G. Najjar, G.-K. Plattner, K. B. Rodgers, C. L. Sabine, J. L. Sarmiento, R. Schlitzer, R. D. Slater, I. J. Totterdell, M.-F. Weirig, Y. Yamanaka & A. Yool, 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686.

    Article  CAS  PubMed  Google Scholar 

  • Ou, M., T. J. Hamilton, J. Eom, E. M. Lyall, J. Gallup, A. Jiang, J. Lee, D. A. Close, S.-S. Yun & C. J. Brauner, 2015. Responses of pink salmon to CO2-induced aquatic acidification. Nature Climate Change 5: 950–955.

    Article  CAS  Google Scholar 

  • Parker, L. M., P. M. Ross, W. A. O’Connor, L. Borysko, D. A. Raftos & H.-O. Pörtner, 2013. Adult exposure influences offspring response to ocean acidification in oysters. Global Change Biology 18: 82–92.

    Article  Google Scholar 

  • Patrick, R., V. P. Binetti & S. G. Halterman, 1981. Acid lakes from natural and anthropogenic causes. Science 211: 446–448.

    Article  CAS  PubMed  Google Scholar 

  • Perry, S. F., 1982. The regulation of hypercapnic acidosis in two salmonids, the freshwater trout (Salmo gairdneri) and the seawater salmon (Onchorynchus kisutch). Marine Behaviour and Physiology 9: 73–79.

    Article  Google Scholar 

  • Phillips, J., G. McKinley, V. Bennington, H. Bootsma, D. Pilcher, R. Sterner & N. Urban, 2015. The potential for CO2-induced acidification in freshwater: a Great Lakes case study. Oceanography 25: 136–145.

    Article  Google Scholar 

  • Rahel, F. J. & J. J. Magnuson, 1983. Low pH and the absence of fish species in naturally acidic Wisconsin lakes: inferences for cultural acidification. Canadian Journal of Fisheries and Aquatic Sciences 40: 3–9.

    Article  Google Scholar 

  • Regan, M. D., A. J. Turko, J. Heras, M. K. Andersen, S. Lefevre, T. Wang, M. Bayley, C. J. Brauner, T. T. do Huong, N. T. Phuong & G. E. Nilsson, 2016. Ambient CO2, fish behaviour and altered GABAergic neurotransmission: exploring the mechanism of CO2-altered behaviour by taking a hypercapnia dweller down to low CO2 levels. Journal of Experimental Biology 219: 109–118.

    Article  PubMed  Google Scholar 

  • Reich, P. B., S. E. Hobbie & T. D. Lee, 2014. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nature Geoscience 7: 920–924.

    Article  CAS  Google Scholar 

  • Schindler, D. W., 1988. Effects of acid rain on freshwater ecosystems. Science 239: 149–157.

    Article  CAS  PubMed  Google Scholar 

  • Shelford, V. E. & W. C. Allee, 1913. The reactions of fishes to gradients of dissolved atmospheric gases. Journal of Experimental Biology 14: 207–266.

    CAS  Google Scholar 

  • Smart, G. R., D. Knox, J. G. Harrison, J. A. Ralph, R. H. Richards & C. B. Cowey, 1979. Nephrocalcinosis in rainbow trout Salmo gairdneri Richardson; the effect of exposure to elevated CO2 concentrations. Journal of Fish Diseases 2: 279–289.

    Article  CAS  Google Scholar 

  • Sobek, S., G. Algesten, A.-K. Bergstrom, M. Jansson & L. J. Tranvik, 2003. The catchment and climate regulation of pCO2 in boreal lakes. Global Change Biology 9: 630–641.

    Article  Google Scholar 

  • Stets, E. G., D. Butman, C. P. McDonald, S. M. Stackpoole, M. D. DeGrandpre & R. G. Striegl, 2017. Carbonate buffering and metabolic controls on carbon dioxide in rivers. Global Biogeochemical Cycles 31: 663–677.

    Article  CAS  Google Scholar 

  • Titus, J. E. & D. T. Hoover, 1993. Reproduction in two submersed macrophytes declines progressively at low pH. Freshwater Biology 30: 63–73.

    Article  Google Scholar 

  • Tix, J. A., C. T. Hasler, C. Sullivan, J. D. Jeffrey & C. D. Suski, 2017a. Effects of elevated carbon dioxide on alarm cue responses in freshwater fishes. Aquatic Ecology 51: 59–72.

    Article  CAS  Google Scholar 

  • Tix, J. A., C. T. Hasler, C. Sullivan, J. D. Jeffrey & C. D. Suski, 2017b. Elevated carbon dioxide has limited acute effects on Lepomis macrochirus behaviour. Journal of Fish Biology 90: 751–772.

    Article  CAS  PubMed  Google Scholar 

  • Urabe, J., J. Togari & J. J. Elser, 2003. Stoichiometric impacts of increased carbon dioxide on a planktonic herbivore. Global Change Biology 9: 818–825.

    Article  Google Scholar 

  • Vadstrup, M. & T. Madsen, 1995. Growth limitation of submerged aquatic macrophytes by inorganic carbon. Freshwater Biology 34: 411–419.

    Article  CAS  Google Scholar 

  • van de Waal, D. B., J. M. Verspagen, J. F. Finke, V. Vournazou, A. K. Immers, W. E. Kardinaal, L. Tonk, S. Becker, E. Van Donk, P. M. Visser & J. Huisman, 2011. Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME Journal 5: 1438–1450.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verspagen, J. M., D. B. Van de Waal, J. F. Finke, P. M. Visser & J. Huisman, 2014a. Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels. Ecology Letters 17: 951–960.

    Article  PubMed  Google Scholar 

  • Verspagen, J. M., D. B. Van de Waal, J. F. Finke, P. M. Visser, E. Van Donk & J. Huisman, 2014b. Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes. PLoS ONE 9: e104325.

    Article  PubMed  PubMed Central  Google Scholar 

  • Waller, D. L., M. R. Bartsch, K. T. Fredricks, L. A. Bartsch, S. M. Schleis & S. H. Lee, 2017. Effects of carbon dioxide on juveniles of the freshwater mussels (Lampsilis siliquoidea [Unionidae]). Environment Toxicology 36: 671–681.

    Article  CAS  Google Scholar 

  • Wells, M. M., 1913. The resistance of fishes to different concentrations and combinations of oxygen and carbon dioxide. Biological Bulletin 25: 323–347.

    Article  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Academic Press, San Diego.

    Google Scholar 

  • Wolfe, A. P. & P. A. Siver, 2013. A hypothesis linking chrysophyte microfossils to lake carbon dynamics on ecological and evolutionary time scales. Global and Planetary Change 111: 189–198.

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by the United States Geological Survey, through funds provided by the United States Environmental Protection Agency’s (USEPA) Great Lakes Restoration Initiative (G14AC00119). The project was also partly funded by the Illinois Department of Natural Resources, also through funds provided by the USEPA’s Great Lakes Restoration Initiative. We also thank two anonymous reviewers for comments made on an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caleb T. Hasler.

Additional information

Handling editor: Eric Larson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasler, C.T., Jeffrey, J.D., Schneider, E.V.C. et al. Biological consequences of weak acidification caused by elevated carbon dioxide in freshwater ecosystems. Hydrobiologia 806, 1–12 (2018). https://doi.org/10.1007/s10750-017-3332-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3332-y

Keywords

Navigation