Advertisement

Hydrobiologia

, Volume 805, Issue 1, pp 391–397 | Cite as

Examining population-specific hatching cues of salinity and light for Artemia franciscana

  • Frank Weston Speer
  • Lawrence J. Weider
Primary Research Paper

Abstract

Dormancy, the physiological start of rest, occurs in numerous animal species. Many crustaceans release various types of encased embryos in a state of dormancy (e.g., cysts, ephippia, etc.). These dormant propagules require specific combinations of abiotic environmental cues to terminate dormancy. Our goal was to determine if population-specific responses to varying levels of salinity and light (photoperiod) would be present in dormancy termination of the brine shrimp, Artemia franciscana, from distinct environments. Therefore, we cross-factored different salinity concentrations and photoperiods with three A. franciscana populations collected from geographically distinct environments. To measure population-specific response, hatching success (i.e., hatching percentage) was calculated for each treatment. Our results supported the hypothesis that diverse populations of A. franciscana do have population-specific responses to photoperiod and salinity ranges, which affect hatching success (e.g., a population from Portugal showed the greatest hatching success at a salinity of 50 g/l, while populations from Spain and the U.S.A. exhibited the greatest hatching success at 25 g/l). These population-level differences should be taken into consideration during experimentation, especially when examining hatching success in this model organism.

Keywords

Brine shrimp Abiotic environmental factors Aquaculture Dormancy 

Notes

Acknowledgements

The authors thank R. Hartnett for her intellectual contributions, technical advice, and research assistance. The authors are grateful for the research assistance provided by E. Kiehnau, B. Culver, F. L. Speer, and T. R. Ledford. The authors appreciate the Estacion Biologica Doñana for providing cyst samples used in this study. Furthermore, the authors want to express their gratitude to M.H. Hoefnagels for revisions and preparations of the manuscript. Funding for this study was provided by the U.S. National Science Foundation (NSF-IOS-OEI) Grants #0924289 and #1256881 to L. J. W. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Further, the authors thank the Joe C. and Carole Kerr McClendon Honors College, the University of Oklahoma, for the financial support. This study represents an independent research project conducted by FWS in the laboratory of LJW, in partial fulfillment of the requirements for a Bachelor of Science (B.S.) degree at The University of Oklahoma.

References

  1. Amat, F., F. Hontoria, O. Ruiz, A. J. Green, M. I. Sánchez, J. Figuerola & F. Hortas, 2005. The American brine shrimp as an exotic invasive species in the western Mediterranean. Biological Invasion 7: 37–47.CrossRefGoogle Scholar
  2. Baruah, K., H. P. P. D. Phong, P. Norouzitallab, T. Defoirdt & P. Bossier, 2015. The gnotobiotic brine shrimp (Artemia franciscana) model system reveals that the phenolic compound pyrogallol protects against infection through its prooxidant activity. Free Radical Biology and Medicine 89: 593–601.CrossRefPubMedGoogle Scholar
  3. Brendonck, L. & L. De Meester, 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491: 65–84.CrossRefGoogle Scholar
  4. Black, A. R. & S. I. Dodson, 2003. Ethanol: a better preservation technique for Daphnia. Limnology and Oceanography: Methods 1: 45–50.CrossRefGoogle Scholar
  5. Boileau, M. G., P. D. N. Hebert & S. S. Schwartz, 1992. Non-equilibrium gene frequency divergence: persistent founder effects in natural populations. Journal of Evolutionary Biology 5: 25–39.CrossRefGoogle Scholar
  6. Cano, I., B. Lopez-Jimena, E. Garcia-Rosado, J. B. Ortiz-Delgado, M. C. Alonso, J. J. Borrego, C. Sarasquete & D. Castro, 2009. Detection and persistence of Lymphocystis disease virus (LCDV) in Artemia sp. Aquaculture 291: 230–236.CrossRefGoogle Scholar
  7. Clegg, J. S., 1997. Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression. The Journal of Experimental Biology 200: 467–475.PubMedGoogle Scholar
  8. De Meester, L., A. Gómez, B. Okamura & K. Schwenk, 2002. The Monopolization Hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecologica 23: 121–135.CrossRefGoogle Scholar
  9. Drinkwater, L. E. & J. S. Clegg, 2002. Experimental biology of cyst diapause. In Abatzopoulos, T. J., J. A. Beardmore, J. S. Clegg & P. Sorgeloos (eds), Artemia: Basic and Applied Biology. Kluwer Academic, Boston: 93–117.Google Scholar
  10. Ehrlich, P. R., 1984. Which animal will invade? In Mooney, H. A. & J. A. Drake (eds), Ecology of Biological Invasions of North America and Hawaii. Springer, New York: 79–95.Google Scholar
  11. Hairston, N. G. & C. E. Cáceres, 1996. Distribution of crustacean diapause: micro- and macroevolutionary pattern and process. Hydrobiologia 320: 27–44.CrossRefGoogle Scholar
  12. Hand, S., 1998. Quiescence in Artemia franciscana embryos: reversible arrest of metabolism and gene expression at low oxygen levels. The Journal of Experimental Biology 201: 1233–1242.PubMedGoogle Scholar
  13. Hebert, P. D. N. & C. C. Wilson, 2000. Diversity of the genus Daphniopsis in the saline waters of Australia. Canadian Journal of Zoology 78: 794–808.CrossRefGoogle Scholar
  14. Hebert, P. D. N., E. A. Remigio, J. K. Colbourne, D. J. Taylor & C. C. Wilson, 2002. Accelerated molecular evolution in halophilic crustaceans. Evolution 56: 909–926.CrossRefPubMedGoogle Scholar
  15. Kellogg, V. L., 1906. A new Artemia and its life conditions. Science 24: 594–596.CrossRefPubMedGoogle Scholar
  16. Kim, H. J. & A. Hagiwara, 2011. Effect of female aging on the morphology and hatchability of resting eggs in the rotifer Brachionus plicatilis Müller. Hydrobiologia 662: 107–111.CrossRefGoogle Scholar
  17. Lavens, P. & P. Sorgeloos, 1996. Manual on the pro-duction and use of live food for aquaculture. FAO Fisheries Technical Paper No. 361.Google Scholar
  18. Lodge, D. M., 1993. Biological invasions: lessons for ecology. Trends in Ecology and Evolution 8: 133–137.CrossRefPubMedGoogle Scholar
  19. McMahon, R. F., 2002. Evolutionary and physiological adaptations of aquatic invasive animals: r selection versus resistance. Canadian Journal of Fish Aquatic Sciences 59: 1235–1244.CrossRefGoogle Scholar
  20. Muñoz, J. & F. Pacios, 2010. Global biodiversity and geographical distribution of diapausing aquatic invertebrates: the case of the cosmopolitan brine shrimp, Artemia (Branchiopoda, Anostraca). Crustaceana 83: 465–480.CrossRefGoogle Scholar
  21. Muñoz, J., A. Gómez, J. Figuerola, F. Amat, C. Rico & A. J. Green, 2014. Colonization and dispersal patterns of the invasive American brine shrimp Artemia franciscana (Branchiopoda: Anostraca) in the Mediterranean region. Hydrobiologia 726: 25–41.CrossRefGoogle Scholar
  22. Pancella, J. R. & R. G. Stross, 1963. Light induced hatching of Daphnia resting eggs. Chesapeake Science 4: 135–140.CrossRefGoogle Scholar
  23. Patra, S. K. & K. S. Mohamed, 2003. Enrichment of Artemia nauplii with the probiotic yeast Saccharomyces boulardii and its resistance against a pathogenic Vibrio. Aquaculture International 11: 414–505.CrossRefGoogle Scholar
  24. Quiroz, M., X. Triadó-Margarit, E. O. Casamayor & G. Gajardo, 2015. Comparison of Artemia–bacteria associations in brines, laboratory cultures and the gut environment: a study based on Chilean hypersaline environments. Extremophiles 19: 135–147.CrossRefPubMedGoogle Scholar
  25. Saleki, R., P. G. Young & D. D. Lefebvre, 1993. Mutants of Arabidopsis thaliana capable of germination under saline conditions. Plant Physiology 101: 839–845.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Sayg, Y. B., 2004. Characterization of parthenogenetic Artemia populations from Çamaltı (Izmir, Turkey) and Kalloni (Lesbos, Greece): survival, growth, maturation, biometrics, fatty acid profiles and hatching characteristics. Hydrobiologia 527: 227–239.CrossRefGoogle Scholar
  27. Shinomura, T., A. Nagatani, H. Hanzawa, M. Kubota, M. Watanabe & M. Furuya, 1996. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proceedings of the National Academy of Sciences USA 93: 8129–8133.CrossRefGoogle Scholar
  28. Van Der Linden, A., R. Blust, K. Cuypers, C. Thoeye & F. Bernaerts, 1987. An action spectrum for light-induced hatching of Artemia cysts. Journal of Experimental Marine Biology and Ecology 92: 207–214.CrossRefGoogle Scholar
  29. Van Der Linden, A., R. Blust, A. J. Van Laere & W. Decleir, 1988. Light-induced release of Artemia dried embryos from diapause: analysis of metabolic status. The Journal of Experimental Zoology 247: 131–138.CrossRefGoogle Scholar
  30. Van Stappen, G., H. Yu, X. Wang, S. Hoffman, K. Cooreman, P. Bossier & P. Sorgeloos, 2007. Occurrence of allochthonous Artemia species in the Bohai Bay area, PR China, as confirmed by RFLP analysis and laboratory culture tests. Fundamental and Applied Limnology Archiv für Hydrobiologie 170: 21–28.CrossRefGoogle Scholar
  31. Weider, L. J. & P. D. N. Hebert, 1987. Ecological and physiological differentiation among low-Arctic clones of Daphnia pulex. Ecology 68: 188–189.CrossRefGoogle Scholar
  32. Zhou, Q., C. Wu, B. Dong, F. Liu & J. Xiang, 2008. The encysted dormant embryo proteome of Artemia sinica. Marine Biotechnology 10: 438–446.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of BiologyThe University of OklahomaNormanUSA
  2. 2.Program in Ecology & Evolutionary BiologyThe University of OklahomaNormanUSA

Personalised recommendations