Chemical changes in detrital matter upon digestive processes in a sesarmid crab feeding on mangrove leaf litter

Abstract

Pathways and rates of decomposition of detrital matter partly depend on its chemical composition. Digestive processes of detritivores drive changes in the chemical composition of detritus, and these changes translate into the chemical composition of the organic matter sequestered into soils and sediments. The latter, in turn, determines how stable organic matter stocks are towards further decay and release of climate-active gases thereupon. We used metabolic fingerprinting to monitor changes in the chemical composition of mangrove detritus upon digestion by a mangrove crab. According to analyses through pyrolysis-GC/MS, the decaying leaf litter of three mangrove species of the Indo-West Pacific, Bruguiera gymnorhiza (L.) Savigny ex Lam. and Poiret 1798, Ceriops tagal (Perr.) C.B. Robinson 1908, and Rhizophora mucronata Lam. 1804, clearly differed from each other in their chemical signature. The feces of detritivorous crabs (Sesarma bidens de Haan 1835) feeding on these detrital sources differed from the source litter in their chemical composition, obviously owing to digestive processes. However, the chemical signatures of feces were more similar to those of their source litter than to those of feces from different litter sources, indicating that the origin of organic matter can be tracked in fecal material. Moreover, male and female crabs appear to exhibit sex-specific digestive processes, as they produced feces that clearly differed from each other in their chemical signature. The 15 chemical compounds most relevant for distinguishing litter sources and fecal material provide first hints on which compounds discriminate the different tree species and characterize digestion by S. bidens. For instance, coumaran (dihydro-benzofuran), indicative of certain carbohydrates, was abundant as a pyrolysis product of the litter of R. mucronata and, to a much lesser degree, C. tagal. Hence, the carbohydrates that were pyrolysed into coumaran seem to discriminate the former two litter sources. Similarly, a pyrolysis-derivate of plant phenolics or proteins, discriminated C. tagal from the other litter sources. From this, we conclude that even subtle differences in litter chemistry and digestive processes of detritivores can be characterized and followed with high resolution through (py-)GC/MS. Further, we propose that the origin of fecal material can be identified with the aid of this technique, and we are currently studying whether the origin of organic matter in the sediment can also be inferred from (py-)GC/MS-data.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Alongi, D., 2009. The Energetics of Mangrove Forests. Springer, Amsterdam.

    Google Scholar 

  2. Alongi, D., 2012. Carbon sequestration in mangrove forests. Carbon Management 3: 313–322.

    CAS  Article  Google Scholar 

  3. Ashton, E. C., P. J. Hogarth & R. Ormond, 1999. Breakdown of mangrove leaf litter in a managed mangrove forest in Peninsular Malaysia. Hydrobiologia 413: 77–88.

    Article  Google Scholar 

  4. Ashwini, K. M. & K. R. Sridhar, 2005. Leaf litter preference and conversion by a saprophagous tropical pill millipede, Arthrosphaera magna Attems. Pedobiologia 49: 307–316.

    Article  Google Scholar 

  5. Buurman, P. & R. Roscoe, 2011. Different chemical composition of free light, occluded light and extractable SOM fractions in soils of Cerrado and tilled and untilled fields, Minas Gerais, Brazil: a pyrolysis-GC/MS study. European Journal of Soil Science 62: 253–266.

    CAS  Article  Google Scholar 

  6. Buurman, P., J. Schellekens, H. Fritze & K. G. J. Nierop, 2007. Selective depletion of organic matter in mottled podzol horizons. Soil Biology & Biochemistry 39: 607–621.

    CAS  Article  Google Scholar 

  7. Buurman, P., K. G. J. Nierop, J. Kaal & N. Senesi, 2009a. Analytical pyrolysis and thermally assisted hydrolysis and methylation of EUROSOIL humic acid samples – A key to their source. Geoderma 150: 10–22.

    CAS  Article  Google Scholar 

  8. Buurman, P., K. G. J. Nierop, J. Kaal & N. Senesi, 2009b. Analytical pyrolysis and thermally assisted hydrolysis and methylation of EUROSOIL humic acid samples – A key to their source. Geoderma 150(2009): 10–22.

    CAS  Article  Google Scholar 

  9. Catalán, T. P., M. A. Lardies & F. Bozinovic, 2008. Food selection and nutritional ecology of woodlice in Central Chile. Physiological Entomology 33: 89–94.

    Article  Google Scholar 

  10. Chatterjee, S. & S. K. Chakraborty, 2015. Population and reproductive biology of two species of brachyuran crabs (Family: Grapsidae) Sesarma (Chiromantes) bidens and Metopograpsus maculatus at coastal belt of Midnapore, West Bengal, India. International Journal of Aquatic Science 6: 15–36.

    Google Scholar 

  11. da Silva, S. M. J., G. L. Hirose & M. L. Negreiros-Fransozo, 2007. Population dynamic of Sesarma rectum (Crustacea, Brachyura, Sesarmidae) from a muddy flat under human impact, Paraty, Rio de Janeiro, Brazil. Iheringia, Série Zoologica 97: 207–214.

    Article  Google Scholar 

  12. Du, X. & S. H. Zeisel, 2013. Spectral deconvolution for gas chromatography mass spectrometry-based metabolomics: current status and future perspectives. Computational and Structural Biotechnology Journal 4: e201201013.

    Article  Google Scholar 

  13. Hübner, L., S. C. Pennings & M. Zimmer, 2015. Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach. Oecologia 178: 999–1015.

    Article  PubMed  Google Scholar 

  14. Islam, M. S. & T. Uehara, 2008. Feeding habits of the sesarmid crab Perisesarma bidens (De Haan) in the mangroves of the Ryukyu Islands, Japan. Bangladesh Journal of Fisheries Research 12: 213–224.

    Google Scholar 

  15. Kaiser, M. J., 2005. Marine Ecology – Processes, Systems, and Impacts. Oxford University Press, New York.

    Google Scholar 

  16. Koch, B. P., J. Rullkötter & R. J. Lara, 2003. Evaluation of triterpenols and sterols as organic matter biomarkers in a mangrove ecosystem in northern Brazil. Wetlands Ecology and Management 11: 257–263.

    CAS  Article  Google Scholar 

  17. Koch, B. P., J. Harder, R. J. Lara & G. Kattner, 2005. The effect of selective microbial degradation on the composition of mangrove derived pentacyclic triterpenols in surface sediments. Organic Geochemistry 36: 273–285.

    CAS  Article  Google Scholar 

  18. Koch, B. P., P. W. M. Souza Filho, H. Behling, M. C. L. Cohen, G. Kattner, J. Rullkötter, B. Scholz-Böttcher & R. J. Lara, 2011. Triterpenols in mangrove sediments as a proxy for organic matter derived from the red mangrove (Rhizophora mangle). Organic Geochemistry 42: 62–73.

    CAS  Article  Google Scholar 

  19. Lancia, J. P., A. Fernández Gimenez, C. Bas & E. Spivak, 2012. Adaptive differences in digestive enzyme activity in the crab Neohelice granulata in relation to sex and habitat. Journal of Crustacean Biology 32: 940–948.

    Article  Google Scholar 

  20. Li, H., A. Cowie, J. A. Johnson, D. Webster, C. J. Martyniuk & C. A. Gray, 2016. Determining the mode of action of anti-mycobacterial C17 diyne natural products using expression profiling: evidence for fatty acid biosynthesis inhibition. BMC Genomics 17: 261.

    Article  Google Scholar 

  21. Linton, S., B. Allardyce, W. Hagen, P. Wencke & R. Saborowski, 2009. Food utilisation and digestive ability of aquatic and semi-terrestrial crayfishes, Cherax destructor and Engaeus sericatus (Astacidae, Parastacidae). Journal of Comparative Physiology B 179: 493–507.

    Article  Google Scholar 

  22. Liu, Y., M. Hui, Z. Cui, D. Luo, C. Song, Y. Li & L. Liu, 2015. Comparative transcriptome analysis reveals sex-biased gene expression in juvenile Chinese Mitten Crab Eriocheir sinensis. PLoS one 10: e0133068.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Markman, S., H. Tadmor-Melamed, A. Arieli & I. Izhaki, 2006. Sex differences in food intake and digestive constraints in a nectarivorous bird. Journal of Experimental Biology. 209: 1058–1063.

    Article  PubMed  Google Scholar 

  24. Mchenga, I. S. S. & M. Tsuchiya, 2010. Feeding choice and the fate of organic materials consumed by Sesarma crabs Perisesarma bidens (De Haan) when offered different diets. Journal of Marine Biology 2010.

  25. Mfilinge, P. L. & M. Tsuchiya, 2008. Effect of temperature on leaf litter consumption by grapsid crabs in a subtropical mangrove (Okinawa, Japan). Journal of Sea Research 59: 94–102.

    Article  Google Scholar 

  26. Nguyen, R. T., H. R. Harvey, X. Zang, J. D. H. van Heemst, M. Hetényi & P. G. Hatcher, 2003. Preservation of algaenan and proteinaceous material during the oxic decay of Botryococcus braunii as revealed by pyrolysis-gas chromatography/mass spectrometry and13C NMR spectroscopy. Organic Geochemistry 34: 483–497.

    CAS  Article  Google Scholar 

  27. Nordhaus, I. & M. Wolff, 2007. Feeding ecology of the mangrove crab Ucides cordatus (Ocypodidae): food choice, food quality and assimilation efficiency. Marine Biology 151: 1665–1681.

    Article  Google Scholar 

  28. Nordhaus, I., T. Salewski & T. C. Jennerjahn, 2011. Food preferences of mangrove crabs related to leaf nitrogen compounds in the Segara Anakan Lagoon, Java, Indonesia. Journal of Sea Research 65: 414–426.

    Article  Google Scholar 

  29. Quadros, A. F., M. Zimmer, P. B. Araujo & J. G. Kray, 2015. Litter traits and palatability to detritivores: a case study across biogeographical boundaries. Nauplius 22: 103–111.

    Article  Google Scholar 

  30. Schellekens, J. & P. Buurman, 2011. n-Alkane distributions as paleoclimatic proxies in ombrotrophic peat: the role of decomposition and dominant vegetation. Geoderma 164: 112–121.

    CAS  Article  Google Scholar 

  31. Schellekens, J., P. Buurman, I. Fraga & A. Martínez-Cortizas, 2011. Holocene vegetation and hydrologic changes inferred from molecular vegetation markers in peat, Penido Vello (Galicia, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 299: 56–69.

    Article  Google Scholar 

  32. Schmidt, M. W. I., M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, D. A. C. Manning, P. Nannipieri, D. P. Rasse, S. Weiner & S. E. Trumbore, 2011. Persistence of soil organic matter as an ecosystem property. Nature 478: 49–56.

    CAS  Article  PubMed  Google Scholar 

  33. Spalding, M., M. Kainuma & L. Collins, 2010. World Atlas of Mangroves. London, Washington, Earthscan.

    Google Scholar 

  34. Stewart, C. E., 2011. Evaluation of angiosperm and fern contributions to soil organic matter using two methods of pyrolysis-gas chromatography-mass spectrometry. Plant and Soil 16: 1–16.

    Google Scholar 

  35. Stewart, C. E., J. C. Neff, K. L. Amatangelo & P. M. Vitousek, 2011. Vegetation effects on soil organic matter chemistry of aggregate fractions in a Hawaiian forest. Ecosystems 14: 382–397.

    CAS  Article  Google Scholar 

  36. Tegelaar, E. W., J. W. Deleeuw & C. Saizjimenez, 1989. Possible origin of aliphatic moieties in humic substances. Science of the Total Environment 81: 1–17.

    Article  Google Scholar 

  37. Thongprajukaew, K. & U. Kovitvadhi, 2013. Effects of sex on characteristics and expression levels of digestive enzymes in the adult guppy Poecilia reticulata. Zoological Studies 52.

  38. Tolu, J., L. Gerber, J.-F. Boily & R. Bindler, 2015. High-throughput characterization of sediment organic matter by pyrolysis–gas chromatography/mass spectrometry and multivariate curve resolution: a promising analytical tool in (paleo)limnology. Analytica Chimica Acta 880: 93–102.

    CAS  Article  PubMed  Google Scholar 

  39. Treplin, M. & M. Zimmer, 2012. Drowned or dry: a cross-habitat comparison of detrital breakdown processes. Ecosystems 15: 477–491.

    Article  Google Scholar 

  40. Vancampenhout, K., B. De Vos, K. Wouters, H. Van Calster, R. Swennen, P. Buurman & J. Deckers, 2010. Determinants of soil organic matter chemistry in maritime temperate forest ecosystems. Soil Biology & Biochemistry 42: 220–233.

    CAS  Article  Google Scholar 

  41. Vancampenhout, K., K. Wouters, B. De Vos, P. Buurman, R. Swennen & J. Deckers, 2009. Differences in chemical composition of soil organic matter in natural ecosystems from different climatic regions – A pyrolysis-GC/MS study. Soil Biology & Biochemistry 41: 568–579.

    CAS  Article  Google Scholar 

  42. Viant, M. R. & U. Sommer, 2013. Mass spectrometry based environmental metabolomics: a primer and review. Metabolomics 9: S144–S158.

    Article  Google Scholar 

  43. Weissburg, M. J., 1993. Sex and the single forager: gender-specific energy maximization strategies in fiddler crabs. Ecology 74: 279–291.

    Article  Google Scholar 

  44. Zimmer, M., 1999. The fate and effects of ingested hydrolyzable tannins in Porcellio scaber. Journal of Chemical Ecology 25: 611–628.

    CAS  Article  Google Scholar 

  45. Zimmer, M., S. C. Pennings, T. L. Buck & T. H. Carefoot, 2002. Species-specific patterns of litter processing by terrestrial isopods (Isopoda: Oniscidea) in high intertidal salt marshes and coastal forests. Functional Ecology 16: 596–607.

    Article  Google Scholar 

  46. Zimmer, M., S. C. Pennings, T. L. Buck & T. H. Carefoot, 2004. Salt marsh litter and detritivores: a closer look at redundancy. Estuaries 27: 753–769.

    Article  Google Scholar 

  47. Zimmer, M., R. Oliveira, E. Rodrigues & M. A. S. Graça, 2005. Degradation of leaf litter tannins by aquatic and terrestrial isopods. Journal of Chemical Ecology 31: 1933–1952.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Lucy Gillis (ZMT) for having brought mangrove seedlings from Zanzibar in 2014, and to Matthias Birkicht (ZMT), Hans-Konrad Nettmann (University Bremen), and the entire Mangrove Ecology Group of ZMT for valuable discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Zimmer.

Additional information

Guest editors: K. W. Krauss, I. C. Feller, D. A. Friess, R. R. Lewis III / Causes and Consequences of Mangrove Ecosystem Responses to an Ever-Changing Climate

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bakkar, T., Helfer, V., Himmelsbach, R. et al. Chemical changes in detrital matter upon digestive processes in a sesarmid crab feeding on mangrove leaf litter. Hydrobiologia 803, 307–315 (2017). https://doi.org/10.1007/s10750-017-3319-8

Download citation

Keywords

  • Mangrove leaf litter
  • Detritivorous crabs
  • Digestive processes
  • Organic matter composition
  • Bruguiera gymnorhiza
  • Ceriops tagal
  • Rhizophora mucronata
  • Sesarma bidens
  • Metabolomics fingerprint
  • Environmental metabolomics