Skip to main content

Advertisement

Log in

Sphaerocavum: a coccoid morphogenus identical to Microcystis in terms of 16S rDNA and ITS sequence phylogenies

  • 20TH IAC SYMPOSIUM
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Sphaerocavum is a typical planktonic coccoid cyanobacterium that co-occurs with Microcystis species, and it is commonly found in blooms. Sphaerocavum is a morphogenus distinguishable from Microcystis, as it presents hollow colonies and two-plane cell division. However, Sphaerocavum phylogenetic position based on marker gene(s) has not yet been established. Here, we combined morphological and molecular analyses to address the taxonomic and phylogenetic placement of Sphaerocavum isolated from Brazilian eutrophic lakes. Phylogenetic analysis revealed that Sphaerocavum and Microcystis clustered together in a well-established clade, thus not supporting the Sphaerocavum designation as a divergent genus. The type strain and isolated lineages from Brazilian tropical regions were grouped in the ITS phylogenetic analysis apart from other Microcystis strains. As such, although the infrageneric recognition of Microcystis by molecular markers is still unclear, our analyses strongly indicate that Sphaerocavum must be considered as a morphotype of Microcystis. Thus, taking together our morphological and molecular analyses, we propose the inclusion of Sphaerocavum within the genus Microcystis. In addition, we suggest that the strains used in this study should be named as Microcystis brasiliensis (Azevedo & Sant’Anna) Rigonato et al. comb. nov., with CCIBt3094 as the type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Allen, M. M., 1968. Simple conditions for growth of unicellular blue- green algae on plates. Journal of Phycology 4: 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers & D. J. Lipman, 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Azevedo, M. T. P. & Sant’Anna, C. L. 2003. Sphaerocavum, a new genus of planktic Cyanobacteria from continental water bodies in Brazil. Algological Studies 79: 79–92.

  • Baker, J. A., B. Entsch, B. A. Neilan & D. B. McKay, 2002. Monitoring changing toxigenicity of a cyanobacterial bloom by molecular methods. Applied and Environmental Microbiology 68: 6070–6076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer, S. L., V. R. Flechtner & Jr Johansen, 2001. Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Molecular Biology and Evolution 18(6): 1057–1069.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, L. R. D., F. Pipole, V. R. Werner, D. H. Laughinghouse, A. C. M. D. Camargo, M. Rangel, K. Konno & C. L. Sant’Anna, 2008. A toxic cyanobacterial bloom in an urban coastal lake, Rio Grande do Sul State, Southern Brazil. Brazilian Journal of Microbiology 39(4): 761–769.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohan, F. M. & D. M. Ward, 2005. Microbial diversity in hot spring cyanobacterial mats: pattern and prediction. In: Inskeep, W. P. & , T. R. McDermott (eds), Geothermal biology and geochemistry in Yellowstone National Park: proceeding of the Thermal Biology Institute workshop, Yellowstone National Park, WY, October 2003. 352 pp. Montana State University Publications. Bozeman, MT, USA.

  • Comas, A., A. Moreira González & L. Toledo, 2010. Adiciones a la ora de algas y cianoprocariotas dulciacuícolas de Cuba. Algas 44: 20–29.

    Google Scholar 

  • Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewing, B. & P. Green, 1998. Base-calling of automated sequencer traces using Phred: II. Error probabilities. Genome Research 8: 186–194.

    Article  CAS  PubMed  Google Scholar 

  • Ewing, B., L. Hillier, M. C. Wendl & P. Green, 1998. Base-calling of automated sequencer traces using Phred: I. Accuracy assessment. Genome Research 8: 175–185.

    Article  CAS  PubMed  Google Scholar 

  • Fonseca, B. M. & C. E. D. M. Bicudo, 2008. Phytoplankton seasonal variation in a shallow stratified eutrophic reservoir (Garças Pond, Brazil). Hydrobiologia 600(1): 267–282.

    Article  CAS  Google Scholar 

  • Fonseca, B. M., C. Ferragut, A. Tucci, L. O. Crossetti, F. Ferrari, D. D. C. Bicudo, C. L. Sant’Anna & C. E. D. M. Bicudo, 2014. Biovolume of Cyanobacteria and algae from Brazilian tropical reservoirs with different trophic status. Hoehnea 41(1): 9–30.

  • Fox, G. E., J. D. Wisotzkey & P. Jurtshuk Jr, 1992. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. International Journal of Systematic Bacteriology 42: 166–170.

    Article  CAS  PubMed  Google Scholar 

  • Gaget, V., M. Welker, R. Rippka, & de N. T. Marsac, 2015. A polyphasic approach leading to the revision of the genus Planktothrix (Cyanobacteria) and its type species, P. agardhii, and proposal for integrating the emended valid botanical taxa, as well as three new species, Planktothrix paucivesiculata sp. nov. ICNP, Planktothrix tepida sp. nov. ICNP, and Planktothrix serta sp. nov. ICNP, as genus and species names with nomenclatural standing under the ICNP. Systematic and Applied Microbiology 38(3): 141–158.

  • Gordon, D., C. Abajian & P. Green, 1998. Consed: a graphical tool for sequence finishing. Genome Research 8: 195–202.

    Article  CAS  PubMed  Google Scholar 

  • Guillard, R. R. & C. J. Lorenzen, 1972. Yellow-green algae with chlorophyllide c. Journal of Phycology 8: 10–14.

    CAS  Google Scholar 

  • Hoffmann, L., J. Komárek & J. Kaštovský, 2005. System of cyanoprokaryotes (cyanobacteria)—state in 2004. Algological Studies (Cyanobacterial Research 6) 117:95–115.

  • Huelsenbeck, J. P. & F. Ronquist, 2005. Bayesian analysis of molecular evolution using MrBayes. In Statistical methods in molecular evolution (pp. 183–226). Springer, New York.

  • Iteman, I., R. Rippka, N. T. de Marsac & M. Herdman, 2000. Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Microbiology 146(6): 1275–1286.

    Article  CAS  PubMed  Google Scholar 

  • Komárek J. & Anagnostidis K. 1998. Cyanoprokaryota1. Chroococcales. In: Ettl H., Gärtner G., Heynig H. & Mollenhauer D. (eds), Süsswasserflora von Mitteleuropa 19/1, p. 548, Gustav Fischer, Jena-Stuttgart- Lübeck-Ulm.

  • Komárek, J., 2016. Review of the cyanobacterial genera implying planktic species after recent taxonomic revisions according to polyphasic methods: state as of 2014. Hydrobiologia 764(1): 259–270.

    Article  Google Scholar 

  • Komárek, J., J. Komárková-Legnerová, C. L. Sant’Anna, M. T. P. Azevedo & P. A. C. Senna, 2002. Two common Microcystis species (Chroococcales, Cyanobacteria) from tropical America, including M. panniformis sp. nov. Cryptogamie, Algologie 23(2): 159–177.

  • Kováčik, L., J. Jezberová, J. Komárková, J. Kopecký & J. Komárek, 2011. Ecological characteristics and polyphasic taxonomic classification of stable pigment-types of the genus Chroococcus (Cyanobacteria). Preslia 83: 145–166.

    Google Scholar 

  • Lane, D. J., 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. & M. Goodfellwon (eds), Nucleic acid techniques in bacterial systematics. Wiley, Chichester: 115–175.

    Google Scholar 

  • Lepère, C., A. Wilmotte & B. Meyer, 2000. Molecular diversity of Microcystis strains (Cyanophyceae, Chroococcales) based on 16S rDNA sequences. Systematics and Geography of Plants Fresh Water Algae: Taxonomy, Biogeography and Conservation 70(2): 275–283.

    Article  Google Scholar 

  • Lodders, N., E. Stackebrandt & U. Nübel, 2005. Frequent genetic recombination in natural populations of the marine cyanobacterium Microcoleus chthonoplastes. Environmental Microbiology 7(3): 434–442.

    Article  CAS  PubMed  Google Scholar 

  • Lowe, T. M. & S. R. Eddy, 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25: 955–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazard, S., M. Ostrowski, F. Partensky & D. J. Scanlan, 2012. Multilocus sequence analysis, taxonomic resolution and biogeography of marine Synechococcus. Environmental Microbiology 14(2): 372–386.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Carbajal, L. H., 2016. El género Sphaerocavum y dominancia de S. brasiliense y Microcystis wesenbergii (Microcystaceae, Cyanophyceae) en la floración algal de la laguna Huacachina, Perú. Revista Peruana de Biología 23(1): 53–60.

    Article  Google Scholar 

  • Neilan, B. A., D. Jacobs, T. del Dot, L. L. Blackall, P. R. Hawkins, P. T. Cox & A. E. Goodman, 1997. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. International Journal of Systematic Bacteriology 47: 693–697.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, V., Y. Tanabe, H. Matsuura, K. Kaya & M. M. Watanabe, 2012. Morphological, biochemical and phylogenetic assessments of water bloom forming tropical morphospecies of Microcystis (Chroococcales, Cyanobacteria). Phycological Research 60(3): 208–222.

    Article  Google Scholar 

  • Nogueira, I. S., W. A. Gama Jr. & E. B. D’Alessandro, 2011. Cianobactérias planctônicas de um lago artificial urbano na cidade de Goiânia, GO. Revista Brasileira de Botânica 34(4): 575–592.

    Google Scholar 

  • Otsuka, S., S. Suda, R. Li, M. Watanabe, H. Oyaizu, S. Matsumoto & M.M. Watanabe, 1998. 16S rDNA Sequences and phylogenetic analyses of Microcystis strains with and without phycoerythrin. FEMS Microbiology Letters 164: 119–124

  • Otsuka, S., S. Suda, R. Li, M. Watanabe, H. Oyaizu, S. Matsumoto & M. M. Watanabe, 1999. Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiology Letters 172(1): 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Otsuka, S., S. Suda, S. Shibata, H. Oyaizu, S. Matsumoto & M. M. Watanabe, 2001. A proposal for the unification of five species of the cyanobacterial genus Microcystis Kützing ex Lemmermann 1907 under the rules of the Bacteriological Code. International Journal of Systematic and Evolutionary Microbiology 51(3): 873–879.

    Article  CAS  PubMed  Google Scholar 

  • Otten, T. G. & H. W. Paerl, 2011. Phylogenetic inference of colony isolates comprising seasonal Microcystis blooms in Lake Taihu, China. Microbial Ecology 62(4): 907–918.

    Article  PubMed  Google Scholar 

  • Salusso, M. M. & L. B. Moraña, 2014. Fitoplancton de embalses subtropicales del noroeste argentino. Gestión y Ambiente 17(1): 209–222.

    Google Scholar 

  • Silva-Stenico, M. E., J. Rigonato, A. S. Lorenzi, M. T. P. Azevedo, C. L. Sant’Anna & M. F. Fiore, 2015. Bioactive Cyanopeptides Produced by Sphaerocavum brasiliense Strains (Cyanobacteria). Journal of the Brazilian Chemical Society 26(10):2088-2096.

  • Stamatakis, A., 2006. RaxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, W., Y. Liu, Z. Wu, S. Lin, G. Yu, B. Yu & R. Li, 2010. cpcBA-IGS as an effective marker to characterize Microcystis wesenbergii (Komárek) Komárek in Kondrateva (cyanobacteria). HarmfulAlgae 9(6): 607–612.

    CAS  Google Scholar 

  • Tanabe, Y., F. Kasai & M. M. Watanabe, 2007. Multilocus sequence typing (MLST) reveals high genetic diversity and clonal population structure of the toxic cyanobacterium Microcystis aeruginosa. Microbiology 153(11): 3695–3703.

    Article  CAS  PubMed  Google Scholar 

  • Taton, A., S. Grubisic, E. Brambilla, R. de Wit & A. Wilmotte, 2003. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Applied and Environmental Microbiology 69(9): 5157–5169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tillett, D., D. L. Parker & B. A. Neilan, 2001. Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. Applied and Environmental Microbiology 67(6): 2810–2818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilgalys, R., 2003. Taxonomic misidentification in public DNA databases. New Phytologist 160(1): 4–5.

    Article  CAS  Google Scholar 

  • Wood, S. A., A. L. M. Crowe, J. G. Ruck & R. G. Wear, 2005. New records of planktonic cyanobacteria in New Zealand freshwaters. New Zealand Journal of Botany 43(2): 479–492.

    Article  Google Scholar 

  • Wu, Z. X., N. Q. Gan & L. R. Song, 2007. Genetic diversity: geographical distribution and toxin profiles of Microcystis strains (Cyanobacteria) in China. Journal of Integrative Plant Biology 49(3): 262–269.

    Article  CAS  Google Scholar 

  • Zapomělová, E., P. Hrouzek, T. Řezanka, J. Jezberová, K. Řeháková, D. Hisem & J. Komárková, 2011. Polyphasic characterization of Dolichospermum spp. and Sphaerospermopsis spp. (Nostocales, Cyanobacteria): morphology, 16S rRNA gene sequences and fatty acid and secondary metabolite profiles. Journal of Phycology 47(5): 1152–1163.

    Article  PubMed  Google Scholar 

  • Zuker, M., 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31(13): 3406–3415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Francisco Dini Andreote for English revisions and suggestions. J. Rigonato received a postdoctoral fellowship from the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES-PNPD20131744 USP/CENA program). W. A. Gama was supported by graduate scholarship FAPESP2012/16430-1. A. Giani acknowledges the financial support provided by CNPq and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célia L. Sant’Anna.

Additional information

Guest editors: Eugen Rott, Allan Pentecost & Jan Mares / Aspects of cyanobacterial biogeography, molecular ecology, functional ecology and systematics

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigonato, J., Sant’Anna, C.L., Giani, A. et al. Sphaerocavum: a coccoid morphogenus identical to Microcystis in terms of 16S rDNA and ITS sequence phylogenies. Hydrobiologia 811, 35–48 (2018). https://doi.org/10.1007/s10750-017-3312-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3312-2

Keywords