Hydropower-related mortality and behaviour of Atlantic salmon smolts in the River Sieg, a German tributary to the Rhine

Abstract

We studied downstream migration of 256 radio-tagged Atlantic salmon smolts passing a low-head power station where technical facilities have been improved to allow safe migration via several bypass routes. Extra mortality was 7 and 17% (two years) in the power station reservoir, and a minimum of 10 and 13% at the power station compared to in a control stretch. The majority of the smolts followed the main flow at the power station, towards the turbines. Sloped bar racks with 10 mm bar spacing hindered smolts from entering the turbines, hence there was no turbine mortality. Smolts used surface openings in the racks, which directed them to a bypass route outside the turbines. The extra mortality in the reservoir and at the power station was related to physical injuries in bypass routes and to predation. The mortality risk in the reservoir and at the power station decreased with increasing migration speed. Migration speeds increased with water discharge. Migration was slower when the smolts passed the power station than on other stretches. This study shows that hydropower regulation caused elevated mortality and delays for downstream migrating fish, even with improved technical facilities to reduce mortality.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aarestrup, K., N. Jepsen, G. Rasmussen & F. Økland, 1999. Movements of two strains of radio tagged Atlantic salmon, Salmo salar L., smolts through a reservoir. Fisheries Management and Ecology 6: 97–107.

    Article  Google Scholar 

  2. Adam, B., R. Bosse, U. Dumont, R. Hadderingh, L. Joergensen, B. Kalusa, G. Lehmann, R. Pischel & U. Schwevers, 2005. Fish Protection Technologies and Downstream Fishways. Dimensioning, Design, Effectiveness Inspection. DWA German Association for Water, Wastewater and Waste, Hennef.

  3. Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.

    Article  Google Scholar 

  4. Bunt, C. M., T. Castro-Santos & A. Haro, 2012. Performance of fish passage structures at upstream barriers to migration. River Research and Applications 28: 457–478.

    Article  Google Scholar 

  5. Calles, O. & L. Greenberg, 2009. Connectivity is a two-way street – the need for a holistic approach to fish passage problems in regulated rivers. River Research and Applications 25: 1268–1286.

    Article  Google Scholar 

  6. Calles, O., I. C. Olsson, C. Comoglio, P. S. Kemp, L. Blunden, M. Blunden, M. Schmitz, & L. Greenberg, 2010. Size-dependent mortality of migratory silver eels at a hydropower plant, and implications for escapement to the sea. Freshwater Biology 58: 2168–2179

    Article  Google Scholar 

  7. Calles, O., S. Karlsson, P. Vezza, C. Comoglio & J. Tielman, 2013. Success of a low-sloping rack for improving downstream passage of silver eels at a hydroelectric plant. Freshwater Biology 55: 2167–2180.

    Article  Google Scholar 

  8. Einum, S. & K. H. Nislow, 2011. Variation in population size through time and space: theory and recent empirical advances from Atlantic salmon. In Aas, Ø., S. Einum, A. Klemetsen & J. Skurdal (eds), Atlantic Salmon Ecology. Wiley-Blackwell, Oxford: 277–298.

    Google Scholar 

  9. Finstad, B., F. Økland, E. B. Thorstad, P. A. Bjørn & R. S. McKinley, 2005. Migration of hatchery-reared Atlantic salmon and wild anadromous brown trout post-smolts in a Norwegian fjord system. Journal of Fish Biology 66: 86–96.

    Article  Google Scholar 

  10. Havn, T. B., F. Økland, M. A. K. Teichert, L. Heermann, J. Borcherding, S. A. Sæther, M. Tamberts, O. H. Diserud & E. B. Thorstad, 2017a. Movements of dead fish in rivers. Animal Biotelemetry 5: 7.

    Article  Google Scholar 

  11. Havn, T. B., S. A. Sæther, E. B. Thorstad, M. A. K. Teichert, L. Heermann, O. H. Diserud, J. Borcherding, M. Tambets & F. Økland, 2017b. Downstream migration of Atlantic salmon smolts past a low head hydropower station equipped with an Archimedes screw and Francis turbines. Ecological Engineering 105: 262–275.

    Article  Google Scholar 

  12. Hvidsten, N. A. & B. O. Johnsen, 1997. Screening of descending Atlantic salmon (Salmo salar L.) smolts from a hydropower intake in the River Orkla, Norway. Nordic Journal of Freshwater Research 73: 44–49.

    Google Scholar 

  13. Hvidsten, N. A., T. G. Heggberget & A. J. Jensen, 1998. Sea water temperature at Atlantic salmon smolt entrance. Nordic Journal of Freshwater Research 74: 79–86.

    Google Scholar 

  14. Hvidsten, N. A., A. J. Jensen, A. H. Rikardsen, B. Finstad, J. Aure, S. Stefansson, P. Fiske & B. O. Johnsen, 2009. Influence of sea temperature and initial marine feeding on survival of Atlantic salmon Salmo salar post-smolts from the Rivers Orkla and Hals, Norway. Journal of Fish Biology 74: 1532–1548.

    CAS  Article  PubMed  Google Scholar 

  15. ICES. 2016. Report of the Working Group on North Atlantic Salmon (WGNAS), 30 March–8 April 2016, Vol. 10. ICES CM 2016/ACOM, Copenhagen: 1–321.

  16. Jepsen, N., K. Aarestrup, F. Økland & G. Rasmussen, 1998. Survival of radio-tagged Atlantic salmon (Salmo salar L.) and trout (Salmo trutta L.) smolts passing a reservoir during seaward migration. Hydrobiologia 372: 347–353.

    Article  Google Scholar 

  17. Jepsen, N., S. Pedersen & E. B. Thorstad, 2000. Behavioural interactions between prey (trout smolts) and predators (pike and pikeperch) in an impounded river. Regulated Rivers: Research and Management 16: 189–198.

    Article  Google Scholar 

  18. Jueg, U., C. Grosser & A. Bielecki, 2004. Zur Kenntnis der Fischegelfauna (Hirudinea: Piscicolidae) in Deutschland. Lauterbornia 52: 39–73. (in German with English abstract).

    Google Scholar 

  19. Karppinen, P., P. Jounela, R. Huusko & J. Erkinaro, 2014. Effects of release timing on migration behaviour and survival of hatchery-reared Atlantic salmon smolts in a regulated river. Ecology of Freshwater Fish 23: 438–452.

    Article  Google Scholar 

  20. Katopodis, C. & J. G. Williams, 2012. The development of fish passage research in a historical context. Ecological Engineering 48: 8–18.

    Article  Google Scholar 

  21. Koed, A., N. Jepsen, K. Aarestrup & C. Nielsen, 2002. Initial mortality of radio-tagged Atlantic salmon (Salmo salar L.) smolts following release downstream of a hydropower station. Hydrobiologia 483: 31–37.

    Article  Google Scholar 

  22. Kraabøl, M., S. I. Johnsen, J. Museth & O. T. Sandlund, 2009. Conserving iteroparous fish stocks in regulated rivers: the need for a broader perspective. Fisheries Management and Ecology 16: 337–340.

    Article  Google Scholar 

  23. Larinier, M., 2008. Fish passage experience at small-scale hydro-electric power plants in France. Hydrobiologia 609: 97–108.

    Article  Google Scholar 

  24. Larinier, M. & F. Travade, 2002. Downstream migration: problems and facilities. Bulletin Français de la Pêche et de la Pisciculture 364(Suppl. 2002-1): 181–207.

    Article  Google Scholar 

  25. Lenders, H. J. R., T. P. M. Chamuleau, A. J. Hendriks, R. C. G. M. Lauwerier, R. S. E. W. Leuven & W. C. E. P. Verberk, 2016. Historical rise of waterpower initiated the collapse of salmon stocks. Scientific Reports 6: 29269.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. McCormick, S. D., L. P. Hansen, T. P. Quinn & R. L. Saunders, 1998. Movement, migration, and smolting of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 55(Suppl. 1): 77–92.

    Article  Google Scholar 

  27. McCormick, S. D., D. T. Lerner, M. Y. Monette, K. Nieves-Puigdoller, J. T. Kelly & B. T. Björnsson, 2009. Taking it with you when you go: how perturbations to the freshwater environment, including temperature, dams, and contaminants, affect marine survival of salmon. American Fisheries Society Symposium 69: 195–214.

    Google Scholar 

  28. Milner, N. J., J. M. Elliott, J. D. Armstrong, R. Gardiner, J. S. Welton & M. Ladle, 2003. The natural control of salmon and trout populations in streams. Fisheries Research 62: 111–125.

    Article  Google Scholar 

  29. Molls, F. & J. Borcherding, 1997. Der Fischegel Cystobranchus respirans (Troschel 1850) am unteren Niederrhein mit neuen Daten zur Phänologie und zum Wirtsfischspektrum. Lauterbornia H 28: 37–44. (in German with English abstract).

    Google Scholar 

  30. Molls, F. & A. Nemitz, 2008. Restoration of Atlantic salmon and other diadromous fishes in the Rhine River system. American Fisheries Society Symposium 49: 817–834.

    Google Scholar 

  31. Monnerjahn, U., 2011. Atlantic salmon (Salmo salar L.) re-introduction in Germany: a status report on national programmes and activities. Journal of Applied Ichthyology 27(Suppl. 3): 33–40.

    Article  Google Scholar 

  32. Myers, L. & M. J. Sirois, 2006. Spearman correlation coefficients, differences between. Encyclopedia of Statistical Sciences. doi:10.1002/0471667196.ess5050.pub2.

    Google Scholar 

  33. Nemitz, A. & I. Steinmann, 2001. Zum Aufkommen und zur Abwanderung von Lachssmolts im Siegsystem. Unveröffentlichte Studie Im Auftrag der LÖBF/LAfAO Nordrhein-Westfalen, 46 pp.

  34. Noonan, M. J., J. W. A. Grant & C. D. Jackson, 2012. A quantitative assessment of fish passage efficiency. Fish and Fisheries 13: 450–464.

    Article  Google Scholar 

  35. Norrgård, J. R., L. A. Greenberg, J. J. Piccolo, M. Schmitz & E. Bergman, 2013. Multiplicative loss of landlocked Atlantic salmon Salmo salar L. smolts during downstream migration through multiple dams. River Research and Applications 29: 1306–1317.

    Article  Google Scholar 

  36. Nyqvist, D., L. A. Greenberg, E. Goerig, O. Calles, E. Bergman, W. R. Ardren & T. Castro-Santos, 2016. Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam. Ecology of Freshwater Fish. doi:10.1111/eff.12318.

    Google Scholar 

  37. R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.

  38. Rikardsen, A. H. & J. B. Dempson, 2011. Dietary life-support: the marine feeding of Atlantic salmon. In Aas, Ø., S. Einum, A. Klemetsen & J. Skurdal (eds), Atlantic Salmon Ecology. Wiley-Blackwell, Oxford: 115–144.

    Google Scholar 

  39. Rivinoja, P., S. McKinnell & H. Lundqvist, 2001. Hindrances to upstream migration of Atlantic salmon (Salmo salar) in a northern Swedish river caused by a hydroelectric power-station. Regulated Rivers: Research and Management 17: 101–115.

    Article  Google Scholar 

  40. Ruggles, C. P., 1980. A review of the downstream migration of Atlantic salmon. Canadian Technical Report on Fisheries and Aquatic Sciences 952: 1–39.

    Google Scholar 

  41. Schneider, J., 2011. Review of reintroduction of Atlantic salmon (Salmo salar) in tributaries of the Rhine River in the German Federal States of Rhineland-Palatinate and Hesse. Journal of Applied Ichthyology 27(Suppl. 3): 24–32.

    Article  Google Scholar 

  42. Serrano, I., P. Rivinoja, L. Karlsson & S. Larsson, 2009. Riverine and early marine survival of stocked salmon smolts, Salmo salar L., descending the Testebo River, Sweden. Fisheries Management and Ecology 16: 386–394.

    Article  Google Scholar 

  43. Sigholt, T. & B. Finstad, 1990. Effect of low temperature on seawater tolerance in Atlantic salmon (Salmo salar) smolts. Aquaculture 84: 167–172.

    CAS  Article  Google Scholar 

  44. Stich, D. S., M. T. Kinnison, J. F. Kocik & J. D. Zydlewski, 2015a. Initiation of migration and movement rates of Atlantic salmon smolts in fresh water. Canadian Journal of Fisheries and Aquatic Sciences 72: 1339–1351.

    CAS  Article  Google Scholar 

  45. Stich, D. S., G. B. Zydlewski, J. F. Kocik & J. D. Zydlewski, 2015b. Linking behavior, physiology, and survival of Atlantic salmon smolts during estuary migration. Marine and Coastal Fisheries 7: 68–86.

    Article  Google Scholar 

  46. Thorstad, E. B., F. G. Whoriskey, A. H. Rikardsen & K. Aarestrup, 2011. Aquatic nomads: the life and migrations of the Atlantic salmon. In Aas, Ø., S. Einum, A. Klemetsen & J. Skurdal (eds), Atlantic Salmon Ecology. Wiley-Blackwell, Oxford: 1–32.

    Google Scholar 

  47. Thorstad, E. B., F. Whoriskey, I. Uglem, A. Moore, A. H. Rikardsen & B. Finstad, 2012. A critical life stage of the Atlantic salmon Salmo salar: behaviour and survival during the smolt and initial post-smolt migration. Journal of Fish Biology 81: 500–542.

    CAS  Article  PubMed  Google Scholar 

  48. Thorstad, E. B., A. H. Rikardsen, A. Alp & F. Økland, 2013. The use of electronic tags in fish research – an overview of fish telemetry methods. Turkish Journal of Fisheries and Aquatic Sciences 13: 881–896.

    Google Scholar 

  49. Thorstad, E. B., T. B. Havn, S. A. Sæther, L. Heermann, M. Teichert, O. Diserud, M. Tambets, J. Borcherding & F. Økland, 2017. Survival and behaviour of Atlantic salmon smolts passing a run-of-river hydropower facility with a movable bulb turbine. Fisheries Management and Ecology. doi:10.1111/fme.12216.

    Google Scholar 

  50. Urke, H. A., T. Kristensen, J. B. Ulvund & J. A. Alfredsen, 2013. Riverine and fjord migration of wild and hatchery-reared Atlantic salmon smolts. Fisheries Management and Ecology 20: 544–552.

    Article  Google Scholar 

  51. Vollset, K. W., S. Mahlum, J. G. Davidsen, H. Skoglund & B. Barlaup, 2016. Interaction between migration behaviour and estuarine mortality in cultivated Atlantic salmon Salmo salar smolts. Journal of Fish Biology 89: 1917–2218.

    Article  Google Scholar 

  52. Zydlewski, J., G. Zydlewski & G. R. Danner, 2010. Descaling injury impairs the osmoregulatory ability of Atlantic salmon smolts entering seawater. Transactions of the American Fisheries Society 139: 129–136.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was commissioned by the Ministry for Climate Protection, Environment, Agriculture, Conservation and Consumer Protection of the State of North Rhine–Westphalia (MKULNV), and funded through the State Agency for Nature, Environment and Consumer Protection of North Rhine–Westphalia (LANUV) to the University of Cologne (JB). We would like to thank Detlev Ingendahl for valuable collaboration, the company Innogy SE for the possibility to perform the study at their power station, Laura Mehner, Florian Kreische, Stefan Scheffels, Marc Steinheuer for help during the fieldwork and Michael Holtegel and colleagues at the LANUV Hatchery Albaum. We would also like to thank two anonymous reviewers for constructive comments to a previous version of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lisa Heermann.

Additional information

Handling editor: Michael Power

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 136 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Havn, T.B., Thorstad, E.B., Teichert, M.A.K. et al. Hydropower-related mortality and behaviour of Atlantic salmon smolts in the River Sieg, a German tributary to the Rhine. Hydrobiologia 805, 273–290 (2018). https://doi.org/10.1007/s10750-017-3311-3

Download citation

Keywords

  • Radio tag
  • Telemetry
  • Salmo salar
  • Downstream migration
  • Migration speed
  • Bypass