, Volume 805, Issue 1, pp 273–290 | Cite as

Hydropower-related mortality and behaviour of Atlantic salmon smolts in the River Sieg, a German tributary to the Rhine

  • Torgeir B. Havn
  • Eva B. Thorstad
  • Maxim A. K. Teichert
  • Stein A. Sæther
  • Lisa HeermannEmail author
  • Richard D. Hedger
  • Meelis Tambets
  • Ola H. Diserud
  • Jost Borcherding
  • Finn Økland
Primary Research Paper


We studied downstream migration of 256 radio-tagged Atlantic salmon smolts passing a low-head power station where technical facilities have been improved to allow safe migration via several bypass routes. Extra mortality was 7 and 17% (two years) in the power station reservoir, and a minimum of 10 and 13% at the power station compared to in a control stretch. The majority of the smolts followed the main flow at the power station, towards the turbines. Sloped bar racks with 10 mm bar spacing hindered smolts from entering the turbines, hence there was no turbine mortality. Smolts used surface openings in the racks, which directed them to a bypass route outside the turbines. The extra mortality in the reservoir and at the power station was related to physical injuries in bypass routes and to predation. The mortality risk in the reservoir and at the power station decreased with increasing migration speed. Migration speeds increased with water discharge. Migration was slower when the smolts passed the power station than on other stretches. This study shows that hydropower regulation caused elevated mortality and delays for downstream migrating fish, even with improved technical facilities to reduce mortality.


Radio tag Telemetry Salmo salar Downstream migration Migration speed Bypass 



This study was commissioned by the Ministry for Climate Protection, Environment, Agriculture, Conservation and Consumer Protection of the State of North Rhine–Westphalia (MKULNV), and funded through the State Agency for Nature, Environment and Consumer Protection of North Rhine–Westphalia (LANUV) to the University of Cologne (JB). We would like to thank Detlev Ingendahl for valuable collaboration, the company Innogy SE for the possibility to perform the study at their power station, Laura Mehner, Florian Kreische, Stefan Scheffels, Marc Steinheuer for help during the fieldwork and Michael Holtegel and colleagues at the LANUV Hatchery Albaum. We would also like to thank two anonymous reviewers for constructive comments to a previous version of the manuscript.

Supplementary material

10750_2017_3311_MOESM1_ESM.docx (136 kb)
Supplementary material 1 (DOCX 136 kb)


  1. Aarestrup, K., N. Jepsen, G. Rasmussen & F. Økland, 1999. Movements of two strains of radio tagged Atlantic salmon, Salmo salar L., smolts through a reservoir. Fisheries Management and Ecology 6: 97–107.CrossRefGoogle Scholar
  2. Adam, B., R. Bosse, U. Dumont, R. Hadderingh, L. Joergensen, B. Kalusa, G. Lehmann, R. Pischel & U. Schwevers, 2005. Fish Protection Technologies and Downstream Fishways. Dimensioning, Design, Effectiveness Inspection. DWA German Association for Water, Wastewater and Waste, Hennef.Google Scholar
  3. Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.CrossRefGoogle Scholar
  4. Bunt, C. M., T. Castro-Santos & A. Haro, 2012. Performance of fish passage structures at upstream barriers to migration. River Research and Applications 28: 457–478.CrossRefGoogle Scholar
  5. Calles, O. & L. Greenberg, 2009. Connectivity is a two-way street – the need for a holistic approach to fish passage problems in regulated rivers. River Research and Applications 25: 1268–1286.CrossRefGoogle Scholar
  6. Calles, O., I. C. Olsson, C. Comoglio, P. S. Kemp, L. Blunden, M. Blunden, M. Schmitz, & L. Greenberg, 2010. Size-dependent mortality of migratory silver eels at a hydropower plant, and implications for escapement to the sea. Freshwater Biology 58: 2168–2179CrossRefGoogle Scholar
  7. Calles, O., S. Karlsson, P. Vezza, C. Comoglio & J. Tielman, 2013. Success of a low-sloping rack for improving downstream passage of silver eels at a hydroelectric plant. Freshwater Biology 55: 2167–2180.CrossRefGoogle Scholar
  8. Einum, S. & K. H. Nislow, 2011. Variation in population size through time and space: theory and recent empirical advances from Atlantic salmon. In Aas, Ø., S. Einum, A. Klemetsen & J. Skurdal (eds), Atlantic Salmon Ecology. Wiley-Blackwell, Oxford: 277–298.Google Scholar
  9. Finstad, B., F. Økland, E. B. Thorstad, P. A. Bjørn & R. S. McKinley, 2005. Migration of hatchery-reared Atlantic salmon and wild anadromous brown trout post-smolts in a Norwegian fjord system. Journal of Fish Biology 66: 86–96.CrossRefGoogle Scholar
  10. Havn, T. B., F. Økland, M. A. K. Teichert, L. Heermann, J. Borcherding, S. A. Sæther, M. Tamberts, O. H. Diserud & E. B. Thorstad, 2017a. Movements of dead fish in rivers. Animal Biotelemetry 5: 7.CrossRefGoogle Scholar
  11. Havn, T. B., S. A. Sæther, E. B. Thorstad, M. A. K. Teichert, L. Heermann, O. H. Diserud, J. Borcherding, M. Tambets & F. Økland, 2017b. Downstream migration of Atlantic salmon smolts past a low head hydropower station equipped with an Archimedes screw and Francis turbines. Ecological Engineering 105: 262–275.CrossRefGoogle Scholar
  12. Hvidsten, N. A. & B. O. Johnsen, 1997. Screening of descending Atlantic salmon (Salmo salar L.) smolts from a hydropower intake in the River Orkla, Norway. Nordic Journal of Freshwater Research 73: 44–49.Google Scholar
  13. Hvidsten, N. A., T. G. Heggberget & A. J. Jensen, 1998. Sea water temperature at Atlantic salmon smolt entrance. Nordic Journal of Freshwater Research 74: 79–86.Google Scholar
  14. Hvidsten, N. A., A. J. Jensen, A. H. Rikardsen, B. Finstad, J. Aure, S. Stefansson, P. Fiske & B. O. Johnsen, 2009. Influence of sea temperature and initial marine feeding on survival of Atlantic salmon Salmo salar post-smolts from the Rivers Orkla and Hals, Norway. Journal of Fish Biology 74: 1532–1548.CrossRefPubMedGoogle Scholar
  15. ICES. 2016. Report of the Working Group on North Atlantic Salmon (WGNAS), 30 March–8 April 2016, Vol. 10. ICES CM 2016/ACOM, Copenhagen: 1–321.Google Scholar
  16. Jepsen, N., K. Aarestrup, F. Økland & G. Rasmussen, 1998. Survival of radio-tagged Atlantic salmon (Salmo salar L.) and trout (Salmo trutta L.) smolts passing a reservoir during seaward migration. Hydrobiologia 372: 347–353.CrossRefGoogle Scholar
  17. Jepsen, N., S. Pedersen & E. B. Thorstad, 2000. Behavioural interactions between prey (trout smolts) and predators (pike and pikeperch) in an impounded river. Regulated Rivers: Research and Management 16: 189–198.CrossRefGoogle Scholar
  18. Jueg, U., C. Grosser & A. Bielecki, 2004. Zur Kenntnis der Fischegelfauna (Hirudinea: Piscicolidae) in Deutschland. Lauterbornia 52: 39–73. (in German with English abstract).Google Scholar
  19. Karppinen, P., P. Jounela, R. Huusko & J. Erkinaro, 2014. Effects of release timing on migration behaviour and survival of hatchery-reared Atlantic salmon smolts in a regulated river. Ecology of Freshwater Fish 23: 438–452.CrossRefGoogle Scholar
  20. Katopodis, C. & J. G. Williams, 2012. The development of fish passage research in a historical context. Ecological Engineering 48: 8–18.CrossRefGoogle Scholar
  21. Koed, A., N. Jepsen, K. Aarestrup & C. Nielsen, 2002. Initial mortality of radio-tagged Atlantic salmon (Salmo salar L.) smolts following release downstream of a hydropower station. Hydrobiologia 483: 31–37.CrossRefGoogle Scholar
  22. Kraabøl, M., S. I. Johnsen, J. Museth & O. T. Sandlund, 2009. Conserving iteroparous fish stocks in regulated rivers: the need for a broader perspective. Fisheries Management and Ecology 16: 337–340.CrossRefGoogle Scholar
  23. Larinier, M., 2008. Fish passage experience at small-scale hydro-electric power plants in France. Hydrobiologia 609: 97–108.CrossRefGoogle Scholar
  24. Larinier, M. & F. Travade, 2002. Downstream migration: problems and facilities. Bulletin Français de la Pêche et de la Pisciculture 364(Suppl. 2002-1): 181–207.CrossRefGoogle Scholar
  25. Lenders, H. J. R., T. P. M. Chamuleau, A. J. Hendriks, R. C. G. M. Lauwerier, R. S. E. W. Leuven & W. C. E. P. Verberk, 2016. Historical rise of waterpower initiated the collapse of salmon stocks. Scientific Reports 6: 29269.CrossRefPubMedPubMedCentralGoogle Scholar
  26. McCormick, S. D., L. P. Hansen, T. P. Quinn & R. L. Saunders, 1998. Movement, migration, and smolting of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 55(Suppl. 1): 77–92.CrossRefGoogle Scholar
  27. McCormick, S. D., D. T. Lerner, M. Y. Monette, K. Nieves-Puigdoller, J. T. Kelly & B. T. Björnsson, 2009. Taking it with you when you go: how perturbations to the freshwater environment, including temperature, dams, and contaminants, affect marine survival of salmon. American Fisheries Society Symposium 69: 195–214.Google Scholar
  28. Milner, N. J., J. M. Elliott, J. D. Armstrong, R. Gardiner, J. S. Welton & M. Ladle, 2003. The natural control of salmon and trout populations in streams. Fisheries Research 62: 111–125.CrossRefGoogle Scholar
  29. Molls, F. & J. Borcherding, 1997. Der Fischegel Cystobranchus respirans (Troschel 1850) am unteren Niederrhein mit neuen Daten zur Phänologie und zum Wirtsfischspektrum. Lauterbornia H 28: 37–44. (in German with English abstract).Google Scholar
  30. Molls, F. & A. Nemitz, 2008. Restoration of Atlantic salmon and other diadromous fishes in the Rhine River system. American Fisheries Society Symposium 49: 817–834.Google Scholar
  31. Monnerjahn, U., 2011. Atlantic salmon (Salmo salar L.) re-introduction in Germany: a status report on national programmes and activities. Journal of Applied Ichthyology 27(Suppl. 3): 33–40.CrossRefGoogle Scholar
  32. Myers, L. & M. J. Sirois, 2006. Spearman correlation coefficients, differences between. Encyclopedia of Statistical Sciences. doi: 10.1002/0471667196.ess5050.pub2.Google Scholar
  33. Nemitz, A. & I. Steinmann, 2001. Zum Aufkommen und zur Abwanderung von Lachssmolts im Siegsystem. Unveröffentlichte Studie Im Auftrag der LÖBF/LAfAO Nordrhein-Westfalen, 46 pp.Google Scholar
  34. Noonan, M. J., J. W. A. Grant & C. D. Jackson, 2012. A quantitative assessment of fish passage efficiency. Fish and Fisheries 13: 450–464.CrossRefGoogle Scholar
  35. Norrgård, J. R., L. A. Greenberg, J. J. Piccolo, M. Schmitz & E. Bergman, 2013. Multiplicative loss of landlocked Atlantic salmon Salmo salar L. smolts during downstream migration through multiple dams. River Research and Applications 29: 1306–1317.CrossRefGoogle Scholar
  36. Nyqvist, D., L. A. Greenberg, E. Goerig, O. Calles, E. Bergman, W. R. Ardren & T. Castro-Santos, 2016. Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam. Ecology of Freshwater Fish. doi: 10.1111/eff.12318.Google Scholar
  37. R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
  38. Rikardsen, A. H. & J. B. Dempson, 2011. Dietary life-support: the marine feeding of Atlantic salmon. In Aas, Ø., S. Einum, A. Klemetsen & J. Skurdal (eds), Atlantic Salmon Ecology. Wiley-Blackwell, Oxford: 115–144.Google Scholar
  39. Rivinoja, P., S. McKinnell & H. Lundqvist, 2001. Hindrances to upstream migration of Atlantic salmon (Salmo salar) in a northern Swedish river caused by a hydroelectric power-station. Regulated Rivers: Research and Management 17: 101–115.CrossRefGoogle Scholar
  40. Ruggles, C. P., 1980. A review of the downstream migration of Atlantic salmon. Canadian Technical Report on Fisheries and Aquatic Sciences 952: 1–39.Google Scholar
  41. Schneider, J., 2011. Review of reintroduction of Atlantic salmon (Salmo salar) in tributaries of the Rhine River in the German Federal States of Rhineland-Palatinate and Hesse. Journal of Applied Ichthyology 27(Suppl. 3): 24–32.CrossRefGoogle Scholar
  42. Serrano, I., P. Rivinoja, L. Karlsson & S. Larsson, 2009. Riverine and early marine survival of stocked salmon smolts, Salmo salar L., descending the Testebo River, Sweden. Fisheries Management and Ecology 16: 386–394.CrossRefGoogle Scholar
  43. Sigholt, T. & B. Finstad, 1990. Effect of low temperature on seawater tolerance in Atlantic salmon (Salmo salar) smolts. Aquaculture 84: 167–172.CrossRefGoogle Scholar
  44. Stich, D. S., M. T. Kinnison, J. F. Kocik & J. D. Zydlewski, 2015a. Initiation of migration and movement rates of Atlantic salmon smolts in fresh water. Canadian Journal of Fisheries and Aquatic Sciences 72: 1339–1351.CrossRefGoogle Scholar
  45. Stich, D. S., G. B. Zydlewski, J. F. Kocik & J. D. Zydlewski, 2015b. Linking behavior, physiology, and survival of Atlantic salmon smolts during estuary migration. Marine and Coastal Fisheries 7: 68–86.CrossRefGoogle Scholar
  46. Thorstad, E. B., F. G. Whoriskey, A. H. Rikardsen & K. Aarestrup, 2011. Aquatic nomads: the life and migrations of the Atlantic salmon. In Aas, Ø., S. Einum, A. Klemetsen & J. Skurdal (eds), Atlantic Salmon Ecology. Wiley-Blackwell, Oxford: 1–32.Google Scholar
  47. Thorstad, E. B., F. Whoriskey, I. Uglem, A. Moore, A. H. Rikardsen & B. Finstad, 2012. A critical life stage of the Atlantic salmon Salmo salar: behaviour and survival during the smolt and initial post-smolt migration. Journal of Fish Biology 81: 500–542.CrossRefPubMedGoogle Scholar
  48. Thorstad, E. B., A. H. Rikardsen, A. Alp & F. Økland, 2013. The use of electronic tags in fish research – an overview of fish telemetry methods. Turkish Journal of Fisheries and Aquatic Sciences 13: 881–896.Google Scholar
  49. Thorstad, E. B., T. B. Havn, S. A. Sæther, L. Heermann, M. Teichert, O. Diserud, M. Tambets, J. Borcherding & F. Økland, 2017. Survival and behaviour of Atlantic salmon smolts passing a run-of-river hydropower facility with a movable bulb turbine. Fisheries Management and Ecology. doi: 10.1111/fme.12216.Google Scholar
  50. Urke, H. A., T. Kristensen, J. B. Ulvund & J. A. Alfredsen, 2013. Riverine and fjord migration of wild and hatchery-reared Atlantic salmon smolts. Fisheries Management and Ecology 20: 544–552.CrossRefGoogle Scholar
  51. Vollset, K. W., S. Mahlum, J. G. Davidsen, H. Skoglund & B. Barlaup, 2016. Interaction between migration behaviour and estuarine mortality in cultivated Atlantic salmon Salmo salar smolts. Journal of Fish Biology 89: 1917–2218.CrossRefGoogle Scholar
  52. Zydlewski, J., G. Zydlewski & G. R. Danner, 2010. Descaling injury impairs the osmoregulatory ability of Atlantic salmon smolts entering seawater. Transactions of the American Fisheries Society 139: 129–136.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Torgeir B. Havn
    • 1
  • Eva B. Thorstad
    • 1
  • Maxim A. K. Teichert
    • 2
  • Stein A. Sæther
    • 1
  • Lisa Heermann
    • 2
    Email author
  • Richard D. Hedger
    • 1
  • Meelis Tambets
    • 3
  • Ola H. Diserud
    • 1
  • Jost Borcherding
    • 2
  • Finn Økland
    • 1
  1. 1.Norwegian Institute for Nature Research - NINATrondheimNorway
  2. 2.Institute for Zoology, General Ecology & LimnologyUniversity of CologneCologneGermany
  3. 3.Wildlife EstoniaTartuEstonia

Personalised recommendations