Skip to main content
Log in

Use of phytoplankton functional groups as a model of spatial and temporal patterns in reservoirs: a case study in a reservoir of central Brazil

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We analyzed the temporal (dry and rainy periods) and spatial (zones) phytoplankton biomass variation (FGs—functional groups) in a tropical reservoir, and determined the main drivers. We hypothesized that water flow negatively affects the FG–environment relationship because high flow promotes dispersal stochasticity. Our results indicated that the FG–environment relationship was affected mainly by the rainfall regime. Periods with intermediate precipitation showed greater predictability than periods with extreme precipitation. This suggests that the effect of stochastic processes on the phytoplankton community is more important in both the highest and lowest water flow, and deterministic processes are more important at intermediate flow. The longitudinal gradient of nutrients, light, and water-column mixing influenced the distribution of the FG biomass. The riverine zone showed high nutrient concentrations, low light availability, and a high biomass of organisms related to highly enriched systems (FG J—chlorophyceans) and shade-adapted taxa (FG S1—cyanobacteria). The lacustrine zone showed high light availability and a high biomass of heterocytous cyanobacteria (FGs S N and H1) and meroplanktonic diatoms (FG MP). The functional approach can be applied to understand the processes responsible for species coexistence and for the organization of aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agostinho, A. A., L. C. Gomes, N. C. L. Santos, J. C. G. Ortega & F. M. Pelicice, 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research 173: 26–36.

    Article  Google Scholar 

  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington DC.

  • Becker, V., V. L. M. Huszar & L. O. Crossetti, 2009. Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir. Hydrobiologia 628: 137–151.

    Article  Google Scholar 

  • Bonilla, S., L. Aubriot, M. C. S. Soares, M. González-Piana, A. Fabre, V. L. M. Huszar, M. Lürling, D. Antoniades, J. Padisák & C. Kruk, 2012. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii?. FEMS Microbiology Ecology 79: 594–607.

    Article  CAS  PubMed  Google Scholar 

  • Borges, P. A. F., S. Train & L. C. Rodrigues, 2008. Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs. Hydrobiologia 607: 63–74.

    Article  Google Scholar 

  • Bortolini, J. C., G. A. Moresco, A. C. M. de Paula, S. Jati & L. C. Rodrigues, 2016. Functional approach based on morphology as a model of phytoplankton variability in a subtropical floodplain lake: a long-term study. Hydrobiologia 767: 151–163.

    Article  CAS  Google Scholar 

  • Bovo-Scomparin, V. M. & S. Train, 2008. Long-term variability of the phytoplankton community in an isolated floodplain lake of the Ivinhema River State Park, Brazil. Hydrobiologia 610: 331–344.

    Article  Google Scholar 

  • Bovo-Scomparin, V. M., S. Train & L. C. Rodrigues, 2013. Influence of reservoirs on phytoplankton dispersion and functional traits: a case study in the Upper Paraná River, Brazil. Hydrobiologia 702: 115–127.

    Article  CAS  Google Scholar 

  • Casco, M. A. & J. Toja, 1994. The distribution and interaction of algal communities in reservoirs. Archiv für Hydrobiologie–BeiheftErgebnisse der Limnologie 40: 85–96.

    Google Scholar 

  • Clarke, K. R., 1994. Non-parametric multivariate analyses of changes in community structure. Austral Ecology 18: 117–143.

    Article  Google Scholar 

  • Crossetti, L. O. & C. E. D. M. Bicudo, 2008. Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garças Pond): the assemblage index application. Hydrobiologia 610: 161–173.

    Article  CAS  Google Scholar 

  • Deus, R., D. Brito, I. A. Kenov, M. Lima, V. Costa, A. Medeiros, R. Neves & C. N. Alves, 2013. Three-dimensional model for analysis of spatial and temporal patterns of phytoplankton in Tucuruí reservoir, Pará, Brazil. Ecological Modelling 253: 28–43.

    Article  Google Scholar 

  • Dokulil, M. T., 2015. Vegetative survival of Cylindrospermopsis raciborskii (Cyanobacteria) at low temperature and low light. Hydrobiologia 764: 241–247.

    Article  Google Scholar 

  • Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  • Jensen, J. P., E. Jeppesen, K. Olrik & P. Kristensen, 1994. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Canadian Journal of Fisheries and Aquatic Sciences 51: 1692–1699.

    Article  Google Scholar 

  • Kimmel, B. L., O. T. Lind & L. J. Paulson, 1990. Reservoir primary production. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir Limnology: Ecological Perspectives. Wiley, New York: 133–194.

    Google Scholar 

  • Kokocinski, M. & J. Soininen, 2012. Environmental factors related to the occurrence of Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) at the north-eastern limit of its geographical range. European Journal of Phycology 47: 12–21.

    Article  Google Scholar 

  • Lind, O. T., T. T. Terrell & B. L. Kimmel, 1993. Problems in reservoir trophic-state classification and implications for reservoir management. In Straškraba, M., J. G. Tundisi & A. Duncan (eds), Comparative Reservoir Limnology and Water Quality Management. Springer Netherlands, Dordrecht: 57–63.

    Chapter  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. E. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 980–985.

    Article  Google Scholar 

  • Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.

    Google Scholar 

  • Mccune, B. & M. J. Mefford, 1999. PC-ORD. Multivariate Analysis of Ecological Data, version 4.0. MjM Software Design, Gleneden Blach, Oregon.

  • Moreti, L. O. R., L. Martos, V. M. Bovo-Scomparin & L. C. Rodrigues, 2013. Spatial and temporal fluctuation of phytoplankton functional groups in a tropical reservoir. Acta Scientiarum. Biological Sciences 35: 359–366.

    Article  CAS  Google Scholar 

  • Naselli-Flores, L., 2000. Phytoplankton assemblages in twenty-one Sicilian reservoirs: relationships between species composition and environmental factors. Hydrobiologia 50: 1–11.

    Article  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2011. Fight on plankton! Or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. Cryptogamie, Algologie 32: 157–204.

    Article  Google Scholar 

  • Naselli-Flores, L. & J. Padisák, 2016. Blowing in the wind: how many roads can a phytoplanktont walk down? A synthesis on phytoplankton biogeography and spatial processes. Hydrobiologia 764: 303–313.

    Article  Google Scholar 

  • Nilsson, C., C. A. Reidy, C. Dynesius & M. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408.

    Article  CAS  PubMed  Google Scholar 

  • Pacheco, F. S., M. C. S. Soares, A. T. Assireu, M. P. Curtarelli, G. Abril, J. L. Stech, P. C. Alvalá & J. P. Ometto, 2015. The effects of river inflow and retention time on the spatial heterogeneity of chlorophyll and water–air CO2 fluxes in a tropical hydropower reservoir. Biogeosciences 12: 147–162.

    Article  CAS  Google Scholar 

  • Padisák, J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie 4: 563–593.

    Google Scholar 

  • Padisák, J., L. O. Crossetti, L. Naselli-Flores, J. Padisak, L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Paerl, H. W., N. S. Hall & E. S. Calandrino, 2011. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment 409: 1739–1745.

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. http://R-project.org/.

  • Reynolds, C. S., 1989. Physical determinants of phytoplankton succession. In Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities. Springer, Berlin: 9–56.

    Chapter  Google Scholar 

  • Reynolds, C. S., 1999. Phytoplankton assemblages in reservoirs. In Tundisi, J. G. & M. Straškraba (eds), Theorical Reservoir Ecology and Its Applications. International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers, São Carlos: 439–456.

    Google Scholar 

  • Reynolds, C. S., J. P. Descy & J. Padisák, 1994. Are phytoplankton dynamics in rivers so different from those in shallow lakes? Hydrobiologia 289: 1–7.

    Article  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2015. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60: 603–619.

    Article  Google Scholar 

  • Soares, M. C. S., V. L. M. Huszar, M. N. Miranda, M. M. Mello, F. Roland & M. Lürrling, 2013. Cyanobacterial dominance in Brazil: distribution and environmental preferences. Hydrobiologia 717: 1–12.

    Article  CAS  Google Scholar 

  • Soininen, J., J. J. Korhonen & M. Luoto, 2013. Stochastic species distributions are driven by organism size. Ecology 94: 660–670.

    Article  PubMed  Google Scholar 

  • Souza, D. G., N. C. Bueno, J. C. Bortolini, L. C. Rodrigues, V. M. Bovo-Scomparin & G. M. de Souza Franco, 2016. Phytoplankton functional groups in a subtropical Brazilian reservoir: responses to impoundment. Hydrobiologia 779: 47–57.

    Article  Google Scholar 

  • Stanford, J. A. & J. V. Ward, 2001. Revisiting the serial discontinuity concept. Regulated Rivers-Research & Management 17: 303–310.

    Article  Google Scholar 

  • Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.

    Article  Google Scholar 

  • Thioulouse, J., D. Chessel, S. Doledec & J. M. Olivier, 1997. ADE-4: a multivariate analysis and graphical display software. Statistics and Computing 7: 75–83.

    Article  Google Scholar 

  • Thornton, K. W., B. L. Kimmel, F. E. Payne, O. T. Lind & L. J. Paulson, 1990. Reservoir Limnology: Ecological Perspectives. Wiley, Somerset, NJ.

    Google Scholar 

  • Thorp, J. H., 2010. Models of ecological processes in riverine ecosystems. In Likens, G. E. (ed.), River Ecosystem Ecology. Academic Press (Elsevier), San Diego, CA: 212–219.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-methodik. Mitteilungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vollenweider, 1968. Water management research. Scientific fundamentals of the eutrophication of lakes and flowing waters with particular reference to nitrogen and phosphorus as factors in eutrophication. Technical Repport DAS/CSI/68, Paris.

  • Winemiller, K. O., P. B. McIntyre, L. Castello, E. Fluet-Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, I. Harrison, M. L. J. Stiassny, R. A. M. Silvano, D. B. Fitzgerald, F. M. Pelicice, A. A. Agostinho, L. C. Gomes, J. S. Albert, E. Baran, M. Petrere, C. Zarfl, M. Mulligan, J. P. Sullivan, C. C. Arantes, L. M. Sousa, A. A. Koning, D. J. Hoeinghaus, M. Sabaj, J. G. Lundberg, J. Armbruster, M. L. Thieme, P. Petry, J. Zuanon, G. T. Vilara, J. Snoeks, C. Ou, W. Rainboth, C. S. Pavanelli, A. Akama, A. van Soesbergen & L. Saenz, 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351: 128–129.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., W. Qi, R. John, W. Wang, F. Song & S. Zhou, 2015. Using functional trait diversity to evaluate the contribution of multiple ecological processes to community assembly during succession. Ecography 38: 1176–1186.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Dr. Luis Mauricio Bini for suggestions for the statistical analysis, and to the Nupélia Limnology laboratory for assistance with physical and chemical water analyses. The study was supported by Furnas Centrais Elétricas S.A. and by the Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luzia Cleide Rodrigues.

Additional information

Handling editor: Judit Padisák

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, L.C., Pivato, B.M., Vieira, L.C.G. et al. Use of phytoplankton functional groups as a model of spatial and temporal patterns in reservoirs: a case study in a reservoir of central Brazil. Hydrobiologia 805, 147–161 (2018). https://doi.org/10.1007/s10750-017-3289-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3289-x

Keywords

Navigation