Advertisement

Hydrobiologia

, Volume 816, Issue 1, pp 61–77 | Cite as

Global change effects on plankton community structure and trophic interactions in a Patagonian freshwater eutrophic system

  • Macarena S. ValiñasEmail author
  • Virginia E. Villafañe
  • Marco J. Cabrerizo
  • Cristina Durán Romero
  • E. Walter Helbling
PATAGONIAN LAKES

Abstract

The short- and mid-term effects of a simulated global change scenario (i.e., Future) of increased nutrients, acidification, and solar radiation, in the presence or absence of grazers, were evaluated on a freshwater plankton community of Patagonia, Argentina. We used a cluster experimental design with microcosms incubated outdoors simulating the in situ (i.e., Present) and the Future conditions. Short-term changes in net productivity and respiration, together with mid-term changes in the community (abundance, biomass, and phytoplankton cell size) were measured. Phytoplankton had lower net productivity and higher respiration and zooplankton had, in general, higher respiration under the Future than that under the Present condition when organisms were exposed to UVR. The mid-term impacts of the Future condition were neither significant on zooplankton abundances, nor in phytoplankton abundances, biomass, and cell size. Nevertheless, the zooplankton–phytoplankton interaction strength was greater under the Future condition. Zooplankton exerted a strong top-down pressure, regardless of the experimental scenarios, grazing preferentially on small phytoplankton cells, thus decreasing their abundances and biomass. Overall, there were significant short-term impact of our Future global change scenario; however, its effects on mid-term time scales were not significant, and indeed, the zooplankton top-down pressure was the main driver that shaped the phytoplankton community.

Keywords

Acidification Nutrients Phytoplankton Solar radiation Zooplankton 

Notes

Acknowledgements

This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica—ANPCyT (PICT 2012-0271 and PICT 2013-0208), and the Fundación Playa Unión. MJC was supported by the Ministerio de Educación, the Cultura y Deporte of Spain (‘Formación de Profesorado Universitario’ PhD fellowship—FPU12/01 243, and the short-term placement fellowship—EST13/0666), and the Campus de Excelencia Internacional, the Universidad de Granada (CeiBiotic-UGR, call 2015). The authors appreciate the comments of two anonymous reviewers, which helped us to improve the manuscript. The authors thank the Cooperativa Eléctrica y de Servicios de Rawson for providing the building’s infrastructure to carry out these experiments. This is Contribution N° 167 of Estación de Fotobiología Playa Unión.

References

  1. Antolini, L., 2012. Percepción del riesgo y dinámica de uso de plaguicidas agrícolas en el Valle Inferior del Río Chubut. Ministerio de Salud, Argentina 1: 1–183.Google Scholar
  2. Barbieri, E. S., V. E. Villafañe & E. W. Helbling, 2002. Experimental assessment of UV effects upon temperate marine phytoplankton when exposed to variable radiation regimes. Limnology and Oceanography 47: 1648–1655.CrossRefGoogle Scholar
  3. Behrenfeld, M. J., R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier & E. S. Boss, 2006. Climate-driven trends in contemporary ocean productivity. Nature 444: 752–755.PubMedCrossRefGoogle Scholar
  4. Berlow, E. L., S. A. Navarrete, C. J. Briggs, M. E. Power & B. A. Menge, 1999. Quantifying variation in the strengths of species interaction. Ecology 80: 2206–2224.CrossRefGoogle Scholar
  5. Bertolo, A., G. Lacroix, F. Lescher-Moutoue & C. Cardinal-Legrand, 2000. Plankton dynamics in planktivore- and piscivore-dominated mesocosms. Archiv für Hydrobiologie 147: 327–349.CrossRefGoogle Scholar
  6. Biswas, H., A. Cros, K. Yadav, V. V. Ramana, V. R. Prasad, T. Acharyya & P. V. R. Babua, 2011. The response of a natural phytoplankton community from the Godavari River Estuary to increasing CO2 concentration during the pre-monsoon period. Journal of Experimental Marine Biology and Ecology 407: 284–293.CrossRefGoogle Scholar
  7. Bleiwas, A. H. & P. M. Stokes, 2011. Filtering rates of Diaptomus minutus, Bosmina spp., Diaphanosoma sp., Holopedium gibberum (Crustacea), and zooplankton community grazing rates in some acidic and circumneutral Ontario Lakes. Canadian Journal of Fisheries and Aquatic Sciences 47: 495–504.CrossRefGoogle Scholar
  8. Borgeraas, J. & D. O. Hessen, 2002. Variations of antioxidant enzymes in Daphnia species and populations as related to ambient UV exposure. Hydrobiologia 477: 15–30.CrossRefGoogle Scholar
  9. Bothwell, M. L., D. M. J. Sherbot & C. M. Pollock, 1994. Ecosystem response to solar ultraviolet-B radiation: influence of trophic-level interactions. Science 265: 97–100.PubMedCrossRefGoogle Scholar
  10. Boyd, P. W., R. Strzepek, F.-X. Fu & D. A. Hutchins, 2010. Environmental control of open-ocean phytoplankton groups: now and in the future. Limnology and Oceanography 55: 1353–1376.CrossRefGoogle Scholar
  11. Boyd, P. W., P. W. Dillingham, C. M. McGraw, E. A. Armstrong, C. E. Cornwall, Y.-Y. Feng, C. L. Hurd, M. Gault-Ringold, M. Y. Roleda, E. Timmins-Schiffman & B. L. Nunn, 2016. Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nature Climate Change 6: 207–213.CrossRefGoogle Scholar
  12. Cabrerizo, M. J., P. Carrillo, V. E. Villafañe & E. W. Helbling, 2014. Current and predicted global change impacts of UVR, temperature and nutrient inputs on photosynthesis and respiration of key marine phytoplankton species. Journal of Experimental Marine Biology and Ecology 461: 371–380.CrossRefGoogle Scholar
  13. Carrillo, P., J. A. Delgado-Molina, J. M. Medina-Sánchez, F. J. Bullejos & M. Villar-Argaiz, 2008a. Phosphorus inputs unmask negative effects of ultraviolet radiation on algae in a high mountain lake. Global Change Biology 14: 423–439.CrossRefGoogle Scholar
  14. Carrillo, P., M. Villar-Argaiz & J. M. Medina-Sánchez, 2008b. Does microorganism stoichiometry predict microbial food web interactions after a phosphorus pulse? Microbial Ecology 56: 350–363.PubMedCrossRefGoogle Scholar
  15. Coello-Camba, A., S. Agustí, J. Holding, J. M. Arrieta & C. M. Duarte, 2014. Interactive effect of temperature and CO2 increase in Arctic phytoplankton. Frontiers in Marine Science 1: 1–10.CrossRefGoogle Scholar
  16. Crain, C. M., K. Kroeker & B. S. Halpern, 2008. Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters 11: 1304–1315.PubMedCrossRefGoogle Scholar
  17. Cripps, G., K. J. Flynn & P. K. Lindeque, 2016. Ocean acidification affects the phyto-zoo plankton trophic transfer efficiency. PLoS ONE 11: e0151739.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cruz-Rivera, E. & M. Hay, 2003. Prey nutritional quality interacts with chemical defenses to affect consumer feeding and fitness. Ecological Monographs 73: 483–506.CrossRefGoogle Scholar
  19. DeMott, W. R., 1988. Discrimination between algae and artificial particles by freshwater and marine copepods. Limnology and Oceanography 33: 397–408.CrossRefGoogle Scholar
  20. Dunne, R. P., 2010. Synergy or antagonism-interactions between stressors on coral reefs. Coral Reefs 29: 145–152.CrossRefGoogle Scholar
  21. Elser, J. J. & C. R. Golman, 1991. Zooplankton effects on phytoplankton in lakes of contrasting trophic status. Limnology and Oceanography 36: 64–90.CrossRefGoogle Scholar
  22. Evans, C. D., P. J. Chapman, J. M. Clark, D. T. Monteith & M. S. Cresser, 2006. Alternative explanations for rising dissolved organic carbon export from organic soils. Global Change Biology 12: 2044–2053.CrossRefGoogle Scholar
  23. Falkowski, P. G., 1981. Light shade adaptation and assimilation numbers. Journal of Plankton Research 3: 203–216.CrossRefGoogle Scholar
  24. Feng, Y., M. E. Warner, Y. Zhang, J. Sun, F.-X. Fu, J. M. Rose & D. A. Hutchins, 2008. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology 43: 87–98.CrossRefGoogle Scholar
  25. Feuchtmayr, H., D. McKee, I. F. Harvey, D. Atkinson & B. Moss, 2007. Response of macroinvertebrates to warming, nutrient addition and predation in large-scale mesocosm tanks. Hydrobiologia 584: 425–432.CrossRefGoogle Scholar
  26. Findlay, D. L., S. E. M. Kasian, M. T. Turner & M. P. Stainton, 1999. Responses of phytoplankton and epilithon during acidification and early recovery of a lake. Freshwater Biology 42: 159–175.CrossRefGoogle Scholar
  27. Fischer, J. M., P. A. Fields, P. G. Pryzbylkowski, J. L. Nicolai & P. J. Neale, 2006a. Ultraviolet radiation and Daphnia respiration in context: the facts. Photochemistry and Photobiology 82: 1723–1724.CrossRefGoogle Scholar
  28. Fischer, J. M., J. L. Nicolai, C. E. Williamson, A. D. Persaud & R. S. Lockwood, 2006b. Effects of ultraviolet radiation on diel vertical migration of crustacean zooplankton: an in situ mesocosm experiment. Hydrobiologia 563: 217–224.CrossRefGoogle Scholar
  29. Fussmann, G., 1996. The importance of crustacean zooplankton in structuring rotifer and phytoplankton communities; an enclosure study. Journal of Plankton Research 18: 1897–1915.CrossRefGoogle Scholar
  30. Gao, K., Y. Wu, G. Li, H. Wu, V. E. Villafañe & E. W. Helbling, 2007. Solar UV radiation drives CO2 fixation in marine phytoplankton: a double-edged sword. Plant Physiology 144: 54–59.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Garcia, N. S., F. Fu & D. A. Hutchins, 2013. Colimitation of the unicellular photosynthetic diazotroph Crocosphaera watsonii by phosphorus, light, and carbon dioxide. Limnology and Oceanography 58: 1501–1512.CrossRefGoogle Scholar
  32. Gattuso, J. P., K. Gao, K. Lee, B. Rost & K. G. Schulz, 2010. Approaches and tools to manipulate the carbonate chemistry. In Riebesell, U., V. J. Fabry, L. Hansson & J.-P. Gattuso (eds.), Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Brussels: 41–52.Google Scholar
  33. Gonçalves, R. J., V. E. Villafañe & E. W. Helbling, 2002. Photorepair activity and protective compounds in two freshwater zooplankton species (Daphnia menucoensis and Metacyclops mendocinus) from Patagonia, Argentina. Photochemical and Photobiological Sciences 1: 996–1000.PubMedCrossRefGoogle Scholar
  34. Gonçalves, R. J., V. E. Villafañe, C. D. Medina, E. S. Barbieri & E. W. Helbling, 2011. Plankton dynamics and photosynthesis responses in a eutrophic lake of Patagonia (Argentina): influence of grazing and UVR. Latin American Journal of Aquatic Research 39: 117–130.Google Scholar
  35. Grad, G., B. J. Burnett & C. E. Williamson, 2003. UV damage and photoreactivation: timing and age are everything. Photochemistry and Photobiology 78: 225–227.PubMedCrossRefGoogle Scholar
  36. Häder, D. P., V. E. Villafañe & E. W. Helbling, 2014. Productivity of aquatic primary producers under global climate change. Photochemical and Photobiological Sciences 13: 1370–1392.PubMedCrossRefGoogle Scholar
  37. Häder, D.-P., C. E. Williamson, S.-A. Wängberg, M. Rautio, K. C. Rose, K. Gao, E. W. Helbling, R. P. Sinha & R. Worrest, 2015. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochemical and Photobiological Sciences 14: 108–126.PubMedCrossRefGoogle Scholar
  38. Hairston, N. G., F. E. Smith & L. B. Slobodkin, 1960. Community structure, population control, and competition. The American Naturalist 94: 421–425.CrossRefGoogle Scholar
  39. Hamilton, D. T., 2011. The interaction of ultraviolet radiation, dissolved organic carbon and primary production by Laurentian Great Lake phytoplankton communities. Univ. of Waterloo, Ontario.Google Scholar
  40. Hare, C. E., K. Leblanc, G. R. DiTullio, R. M. Kudela, Y. Zhang, P. A. Lee, S. Riseman & D. A. Hutchins, 2007. Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. Marine Ecology Progress Series 352: 9–16.CrossRefGoogle Scholar
  41. Helbling, E. W., E. S. Barbieri, M. A. Marcoval, R. J. Gonçalves & V. E. Villafañe, 2005. Impact of solar ultraviolet radiation on marine phytoplankton of Patagonia, Argentina. Photochemistry and Photobiology 81: 807–818.PubMedCrossRefGoogle Scholar
  42. Helbling, E. W., A. T. Banaszak & V. E. Villafañe, 2015. Global change feed-back inhibits cyanobacterial photosynthesis. Scientific Reports 5: 1451.Google Scholar
  43. Heraud, P., S. Roberts, K. Shelly & J. Beardall, 2005. Interactions between UV-B exposure and phosphorus nutrition. II. Effects on rates of damage and repair. Journal of Phycology 41: 1212–1218.CrossRefGoogle Scholar
  44. Hessen, D. O., E. Leu, P. J. Færøvig & S. F. Petersen, 2008. Light and spectral properties as determinants of C:N:P-ratios in phytoplankton. Deep Sea Research Part II: Topical Studies in Oceanography 55: 2169–2175.CrossRefGoogle Scholar
  45. Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  46. Holm-Hansen, O. & B. Riemann, 1978. Chlorophyll a determination: improvements in methodology. Oikos 30: 438–447.CrossRefGoogle Scholar
  47. Hurd, C. L., C. D. Hepburn, K. I. Currie, J. A. Raven & K. A. Hunter, 2009. Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs. Journal of Phycology 45: 1236–1251.PubMedCrossRefGoogle Scholar
  48. IPCC, 2013. Climate Change 2013. The Physical Science Basis. Cambridge University Press, New York.Google Scholar
  49. Karanas, J. J., H. Van Dyke & R. C. Worrest, 1979. Midultraviolet (UV-B) sensitivity of Acartia clausii Giesbrecht (Copepoda). Limnology and Oceanography 24: 1104–1116.CrossRefGoogle Scholar
  50. Katechakis, A., H. Stibor, U. Sommer & T. Hansen, 2004. Feeding selectivities and food niche separation of Acartia clausi, Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean). Journal of Plankton Research 26: 589–603.CrossRefGoogle Scholar
  51. Katrina, P., H. S. Greig, P. L. Thompson, T. S. A. Carvalho-Pereira & J. B. Shurin, 2012. Warming modifies trophic cascades and eutrophication in experimental freshwater communities. Ecology 93: 1421–1430.CrossRefGoogle Scholar
  52. Kissman, C. E. H., C. E. Williamson, K. C. Rose & J. E. Saros, 2013. Response of phytoplankton in an alpine lake to inputs of dissolved organic matter through nutrient enrichment and trophic forcing. Limnology and Oceanography 58: 867–880.CrossRefGoogle Scholar
  53. Kissman, C. E. H., C. E. Williamson, K. C. Rose & J. E. Saros, 2017. Nutrients associated with terrestrial dissolved organic matter drive changes in zooplankton:phytoplankton biomass ratios in an alpine lake. Freshwater Biology 62: 40–51.CrossRefGoogle Scholar
  54. Knight, T. M., M. W. McCoy, J. M. Chase, K. A. McCoy & R. D. Holt, 2005. Trophic cascades across ecosystems. Nature 437: 880–883.PubMedCrossRefGoogle Scholar
  55. Lacuna, D. G. & S.-I. Uye, 2001. Influence of mid-ultraviolet (UVB) radiation on the physiology of the marine planktonic copepod Acartia omorii and the potential role of photoreactivation. Journal of Plankton Research 23: 143–155.CrossRefGoogle Scholar
  56. Leech, D. M. & C. E. Williamson, 2000. Is tolerance to UV radiation in zooplankton related to body size, taxon, or lake transparency? Ecological Applications 10: 1530–1540.CrossRefGoogle Scholar
  57. Li, W. & K. Gao, 2012. A marine secondary producer respires and feeds more in a high CO2 ocean. Marine Pollution Bulletin 64: 699–703.PubMedCrossRefGoogle Scholar
  58. Marcoval, M. A., V. E. Villafañe & E. W. Helbling, 2007. Interactive effects of ultraviolet radiation and nutrient addition on growth and photosynthesis performance of four species of marine phytoplankton. Journal of Photochemistry and Photobiology, B: Biology 89: 78–87.CrossRefGoogle Scholar
  59. Menden-Deuer, S. & E. J. Lessard, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45: 569–579.CrossRefGoogle Scholar
  60. Monteith, D. T., J. L. Stoddard, C. D. Evans, H. A. de Wit, M. Forsius, T. Høgåsen, A. Wilander, B. L. Skjelkvåle, D. S. Jeffries, J. Vuorenmaa, B. Keller, J. Kopácek & J. Vesely, 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537–541.PubMedCrossRefGoogle Scholar
  61. Montoya, J. M. & D. Raffaelli, 2010. Climate change, biotic interactions and ecosystem services. Phylosophical Transactions of the Royal Society B: Biological Sciences 365: 2013–2018.CrossRefGoogle Scholar
  62. Morris, M. D., 1991. Factorial sampling plans for preliminary computational experiments. Tecnometrics 33: 161–174.CrossRefGoogle Scholar
  63. Muylaert, K., S. Declerck, J. Van Wichelen, L. De Meester & W. Vyverman, 2006. An evaluation of the role of daphnids in controlling phytoplankton biomass in clear versus turbid shallow lakes. Limnologica 36: 69–78.CrossRefGoogle Scholar
  64. O’Neil, J. M., T. W. Davis, M. A. Burford & C. J. Gobler, 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14: 313–334.CrossRefGoogle Scholar
  65. Paruelo, J., E. Jobaggy, M. Oesterheld, R. Golluscio & M. Aguiar, 2007. The grasslands and steppes of Patagonia and the Río de la Plata plains. In Veblen, T. T., K. R. Young & A. R. Orme (eds.), The physical geography of South America. Oxford University Press, New York: 232–248.Google Scholar
  66. Persson, L., S. Diehl, L. Johansson, G. Andersson & S. F. Hamrin, 1992. Trophic interactions in temperate lake ecosystems: a test of food chain theory. The American Naturalist 140: 59–84.CrossRefGoogle Scholar
  67. Porra, R. J., 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research 73: 149–156.PubMedCrossRefGoogle Scholar
  68. Prince, E. K., L. Lettieri, K. J. McCurdy & J. Kubanek, 2006. Fitness consequences for copepods feeding on a red tide dinoflagellate: deciphering the effects of nutritional value, toxicity, and feeding behavior. Oecologia 147: 479–488.PubMedCrossRefGoogle Scholar
  69. Quinn, G. P. & M. J. Keough, 2002. Experimental design and data analysis for biologists. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  70. Rasconi, S., A. Gall, K. Winter & M. J. Kainz, 2015. Increasing water temperature triggers dominance of small freshwater plankton. PLoS ONE 10: e0140449.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Rice, W. R., 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.PubMedCrossRefGoogle Scholar
  72. Rossoll, D., R. Bermúdez, H. Hauss, K. G. Schulz, U. Riebesell, U. Sommer & M. Winder, 2012. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE 7: e34737.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Sancar, A., 1996. DNA excision repair. Annual Review of Biochemistry 65: 43–81.PubMedCrossRefGoogle Scholar
  74. Schneider, S. C., M. Kahlert & M. G. Kelly, 2013. Interactions between pH and nutrients on benthic algae in streams and consequences for ecological status assessment and species richness patterns. Science of the Total Environment 444: 73–84.PubMedCrossRefGoogle Scholar
  75. Schulz, K. G., R. G. L. Bellerby, C. P. D. Brussaard, J. Büdenbender, J. Czerny, A. Engel, M. Fischer, S. Koch-Klavsen, S. A. Krug, S. Lischka, A. Ludwig, M. Meyerhöfer, G. Nondal, A. Silyakova, A. Stuhr & U. Riebesell, 2013. Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide. Biogeosciences 10: 161–180.CrossRefGoogle Scholar
  76. Sinha, R. P. & D.-P. Häder, 2002. UV-induced DNA damage and repair: a review. Photochemical and Photobiological Sciences 1: 225–236.PubMedCrossRefGoogle Scholar
  77. Siuda, A. N. S. & H. G. Dam, 2010. Effects of omnivory and predator–prey elemental stoichiometry on planktonic trophic interactions. Limnology and Oceanography 55: 2107–2116.CrossRefGoogle Scholar
  78. Smith, V. H., G. D. Tilman & J. C. Nekola, 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196.PubMedCrossRefGoogle Scholar
  79. Sobrino, C., M. L. Ward & P. J. Neale, 2008. Acclimation to elevated carbon dioxide and ultraviolet radiation in the diatom Thalassiosira pseudonana: effects on growth, photosynthesis, and spectral sensitivity of photoinhibition. Limnology and Oceanography 53: 494–505.CrossRefGoogle Scholar
  80. Sobrino, C., M. Segovia, P. J. Neale, J. M. Mercado, C. García-Gómez, G. Kulk, M. R. Lorenzo, T. Camarera, W. H. Van de Poll, K. Spilling & Z. Ruan, 2014. Effect of CO2, nutrients and light on coastal plankton. IV. Physiological responses. Aquatic Biology 22: 77–93.CrossRefGoogle Scholar
  81. Sommaruga, R., I. Obernosterer, G. J. Herndl & R. Psenner, 1997. Inhibitory effect of solar radiation on thymidine and leucine incorporation by freshwater and marine bacterioplankton. Applied and Environmental Microbiology 63: 4178–4184.PubMedPubMedCentralGoogle Scholar
  82. Sommer, U. & F. Sommer, 2006. Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147: 183–194.PubMedCrossRefGoogle Scholar
  83. Sommer, U., F. Sommer, B. Santer, E. Zöllner, K. Jürgens, C. Jamieson, M. Boersma & K. Gocke, 2003. Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia 135: 639–647.PubMedCrossRefGoogle Scholar
  84. Suffrian, K., P. Simonelli, J. C. Nejstgaard, S. Putzeys, Y. Carotenuto & A. N. Antia, 2008. Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased CO2 levels. Biogeosciences 5: 1145–1156.CrossRefGoogle Scholar
  85. Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology and Systematics 13: 349–372.CrossRefGoogle Scholar
  86. Tiselius, P. & P. R. Jonsson, 1990. Foraging behaviour of six calanoid copepods: observations and hydrodynamic analysis. Marine Ecology Progress Series 66: 23–34.CrossRefGoogle Scholar
  87. Torstensson, A., M. Hedblom, J. Andersson, M. X. Andersson & A. Wulff, 2013. Synergism between elevated pCO2 and temperature on the Antarctic sea ice diatom Nitzschia lecointei. Biogeosciences 10: 6391–6401.CrossRefGoogle Scholar
  88. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Internationale Vereinigung fur Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  89. Van de Poll, W. H. & A. G. J. Buma, 2009. Does ultraviolet radiation affect the xanthophyll cycle in marine phytoplankton? Photochemical and Photobiological Sciences 8: 1295–1301.PubMedCrossRefGoogle Scholar
  90. Vanni, M. J. & C. D. Layne, 1997. Nutrient recycling and herbivory as mechanisms in the ‘‘top–down’’ effect of fish on algae in lakes. Ecology 78: 21–40.Google Scholar
  91. Veen, A., M. Reuvers & P. Roncak, 1997. Effects of acute and chronic UV-B exposure on a green alga: a continuous culture study using a computer-controlled dynamic light regime. In Rozema, J., W. W. C. Gieskes, S. C. van de Geijn, C. Nolan & H. de Boois (eds.), UV-B and Biosphere. Plant Ecology. Kluwer Academic Publishers, Belgium: 28–40.CrossRefGoogle Scholar
  92. Verschoor, A., M. A. Van Dijk, J. Huisman & E. Van Donk, 2013. Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshwater Biology 58: 597–611.CrossRefGoogle Scholar
  93. Villafañe, V. E., S. D. Guendulain-García, F. Valadez, G. Rosiles-González, E. W. Helbling & A. T. Banaszak, 2015a. Antagonistic and synergistic responses to solar ultraviolet radiation and increased temperature of phytoplankton from cenotes (sink holes) of the Yucatán Peninsula, México. Freshwater Science 34: 1282–1292.CrossRefGoogle Scholar
  94. Villafañe, V. E., M. S. Valiñas, M. J. Cabrerizo & E. W. Helbling, 2015b. Physio-ecological responses of Patagonian coastal marine phytoplankton in a scenario of global change: role of acidification, nutrients and solar UVR. Marine Chemistry 177: 411–420.CrossRefGoogle Scholar
  95. Villar-Argaiz, M., F. J. Bullejos, J. M. Medina-Sánchez, E. Ramos-Rodríguez, J. A. Delgado-Molina & P. Carrillo, 2012. Disentangling food quantity and quality effects in zooplankton response to P-enrichment and UV radiation. Limnology and Oceanography 57: 235–250.CrossRefGoogle Scholar
  96. Walther, G.-R., 2010. Community and ecosystem responses to recent climate change. Phylosophical Transactions of the Royal Society B: Biological Sciences 365: 2019–2024.CrossRefGoogle Scholar
  97. Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M. Fromentin, O. Hoegh-Guldberg & F. Bairlein, 2002. Ecological responses to recent climate change. Nature 416: 389–395.PubMedCrossRefGoogle Scholar
  98. Williamson, C. E. & J. E. Saros, 2008. What do lakes and reservoirs tell us about climate change? EOS, Transactions. American Geophysical Union 89: 546.CrossRefGoogle Scholar
  99. Williamson, C. E., B. R. Hargreaves, P. S. Orr & P. A. Lovera, 1999. Does UV play a role in changes in predation and zooplankton community structure in acidified lakes? Limnology and Oceanography 44: 774–783.CrossRefGoogle Scholar
  100. Williamson, C. E., H. J. De Lange & D. M. Leech, 2007. Do zooplankton contribute to an ultraviolet clear-water phase in lakes? Limnology and Oceanography 52: 662–667.CrossRefGoogle Scholar
  101. Williamson, C. E., J. E. Saros & D. W. Schindler, 2009. Sentinels of change. Science 323: 887–888.PubMedCrossRefGoogle Scholar
  102. Winder, M. & U. Sommer, 2012. Phytoplankton response to a changing climate. Hydrobiologia 698: 5–16.CrossRefGoogle Scholar
  103. Wojtal-Frankiewicz, A., 2012. The effects of global warming on Daphnia spp. population dynamics: a review. Aquatic Ecology 46: 37–53.CrossRefGoogle Scholar
  104. Wootton, J. T., 1997. Estimates and tests of per capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecological Monographs 67: 45–64.CrossRefGoogle Scholar
  105. Wrona, F. J., T. D. Prowse, J. D. Reist, J. E. Hobbie, L. M. J. Lévesque & W. F. Vincent, 2006. Climate change effects on aquatic biota, ecosystem structure and function. Ambio 35: 359–369.PubMedCrossRefGoogle Scholar
  106. Xenopoulos, M. A., P. C. Frost & J. J. Elser, 2002. Joint effects of UV radiation and phosphorus supply on algal growth rate and elemental composition. Ecology 83: 423–435.CrossRefGoogle Scholar
  107. Zar, J. H., 1999. Biostatistical analysis, 4th ed. Prentice Hall, Englewood Cliffs.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Macarena S. Valiñas
    • 1
    • 2
    Email author
  • Virginia E. Villafañe
    • 1
    • 2
  • Marco J. Cabrerizo
    • 1
    • 3
  • Cristina Durán Romero
    • 1
  • E. Walter Helbling
    • 1
    • 2
  1. 1.Estación de Fotobiología Playa UniónRawsonArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Departamento de Ecología, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations