Tracing particulate matter and associated microorganisms in freshwaters

Abstract

Sediment resuspension represents a key process in all natural aquatic systems, owing to its role in nutrient cycling and transport of potential contaminants. Although suspended solids are generally accepted as an important quality parameter, current monitoring programs cover quantitative aspects only. Established methodologies do not provide information on origin, fate, and risks associated with uncontrolled inputs of solids in waters. Here we discuss the analytical approaches to assess the occurrence and ecological relevance of resuspended particulate matter in freshwaters, with a focus on the dynamics of associated contaminants and microorganisms. Triggered by the identification of specific physical–chemical traits and community structure of particle-associated microorganisms, recent findings suggest that a quantitative determination of microorganisms can be reasonably used to trace the origin of particulate matter by means of nucleic acid-based assays in different aquatic systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abia, A. L. K., E. Ubomba-Jaswa, B. Genthe & M. N. B. Momba, 2016. Quantitative microbial risk assessment (QMRA) shows increased public health risk associated with exposure to river water under conditions of riverbed sediment resuspension. Science of The Total Environment 566: 1143–1151.

    Article  PubMed  Google Scholar 

  2. Allen, H. K., J. Donato, H. H. Wang, K. A. Cloud-Hansen, J. Davies & J. Handelsman, 2010. Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology 8: 251–259.

    CAS  Article  PubMed  Google Scholar 

  3. Amalfitano, S., M. Coci, G. Corno & G. M. Luna, 2015. A microbial perspective on biological invasions in aquatic ecosystems. Hydrobiologia 746: 13–22.

    Article  Google Scholar 

  4. Bai, S. & W.-S. Lung, 2005. Modeling sediment impact on the transport of fecal bacteria. Water Research 39: 5232–5240.

    CAS  Article  PubMed  Google Scholar 

  5. Bartram, J. & R. Ballance, 1996. Water quality monitoring: a practical guide to the design and implementation of freshwater quality studies and monitoring programmes. CRC Press, Boca Raton.

    Google Scholar 

  6. Battin, T. J., L. A. Kaplan, J. Denis Newbold & C. M. E. Hansen, 2003. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426: 439–442.

    CAS  Article  PubMed  Google Scholar 

  7. Bertrand-Krajewski, J. L., 2004. TSS concentration in sewers estimated from turbidity measurements by means of linear regression accounting for uncertainties in both variables. Water Science and Technology 50: 81–88.

    CAS  PubMed  Google Scholar 

  8. Bilotta, G. S. & R. E. Brazier, 2008. Understanding the influence of suspended solids on water quality and aquatic biota. Water Research 42: 2849–2861.

    CAS  Article  PubMed  Google Scholar 

  9. Bloesch, J., 1994. A review of methods used to measure sediment resuspension. Hydrobiologia 284: 13–18.

    Article  Google Scholar 

  10. Bloesch, J., 1995. Mechanisms, measurement and importance of sediment resuspension in lakes. Marine and Freshwater Research 46: 295–304.

    Google Scholar 

  11. Bloesch, J. & U. Uehlinger, 1986. Horizontal sedimentation differences in a eutrophic Swiss lake. Limnology and Oceanography 31: 1094–1109.

    CAS  Article  Google Scholar 

  12. Boi, P., S. Amalfitano, A. Manti, F. Semprucci, D. Sisti, M. B. Rocchi, M. Balsamo & S. Papa, 2016. Strategies for water quality assessment: a multiparametric analysis of microbiological changes in river waters. River Research and Applications 32: 490–500.

    Article  Google Scholar 

  13. Briée, C., D. Moreira & P. López-García, 2007. Archaeal and bacterial community composition of sediment and plankton from a suboxic freshwater pond. Research in Microbiology 158: 213–227.

    Article  PubMed  Google Scholar 

  14. Butturini, A., A. Guarch, A. M. Romaní, A. Freixa, S. Amalfitano, S. Fazi & E. Ejarque, 2016. Hydrological conditions control in situ DOM retention and release along a Mediterranean river. Water Research 99: 33–45.

    CAS  Article  PubMed  Google Scholar 

  15. Callieri, C., A. Lami & R. Bertoni, 2011. Microcolony formation by single-cell Synechococcus strains as a fast response to UV radiation. Applied and Environmental Microbiology 77: 7533–7540.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Callieri, C., S. Amalfitano, G. Corno, & R. Bertoni, 2016a. Grazing-induced Synechococcus microcolony formation: experimental insights from two freshwater phylotypes. FEMS Microbiology Ecology 92: fiw154.

  17. Callieri, C., S. Hernández-Avilés, M. M. Salcher, D. Fontaneto & R. Bertoni, 2016b. Distribution patterns and environmental correlates of Thaumarchaeota abundance in six deep subalpine lakes. Aquatic Sciences 78: 215–225.

    CAS  Article  Google Scholar 

  18. Casentini, B., F. T. Falcione, S. Amalfitano, S. Fazi & S. Rossetti, 2016. Arsenic removal by discontinuous ZVI two steps system for drinking water production at household scale. Water Research 106: 135–145.

    CAS  Article  PubMed  Google Scholar 

  19. Chapman, D. V., 1996. Water quality assessments: a guide to the use of biota, sediments, and water in environmental monitoring. E & Fn Spon, London.

    Google Scholar 

  20. Characklis, G. W., M. J. Dilts, O. D. Simmons, C. A. Likirdopulos, L. A. H. Krometis & M. D. Sobsey, 2005. Microbial partitioning to settleable particles in stormwater. Water Research 39: 1773–1782.

    CAS  Article  PubMed  Google Scholar 

  21. Coci, M., N. Odermatt, M. M. Salcher, J. Pernthaler & G. Corno, 2015. Ecology and distribution of Thaumarchaea in the deep hypolimnion of Lake Maggiore. Archaea 2015: 1–12.

    Article  Google Scholar 

  22. Cole, J. J., S. R. Carpenter, M. L. Pace, M. C. de Bogert, J. L. Kitchell & J. R. Hodgson, 2006. Differential support of lake food webs by three types of terrestrial organic carbon. Ecology Letters 9: 558–568.

    Article  PubMed  Google Scholar 

  23. Colwell, R. R., P. R. Brayton, D. J. Grimes, D. B. Roszak, S. A. Huq & L. M. Palmer, 1985. Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Nature Biotechnology 3: 817–820.

    Article  Google Scholar 

  24. Cornett, R. J., L. A. Chant, B. A. Risto & E. Bonvin, 1994. Identifying resuspended particles using isotope ratios. Hydrobiologia 284: 69–77.

    Article  Google Scholar 

  25. Corno, G., M. Coci, M. Giardina, S. Plechuk, F. Campanile & S. Stefani, 2014. Antibiotics promote aggregation within aquatic bacterial communities. Frontiers in Microbiology. doi:10.3389/fmicb.2014.00297.

    PubMed  PubMed Central  Google Scholar 

  26. Costerton, J. W., 1999. Bacterial bofilms: a common cause of persistent infections. Science 284: 1318–1322.

    CAS  Article  PubMed  Google Scholar 

  27. Coumou, D. & S. Rahmstorf, 2012. A decade of weather extremes. Nature Climate Change Nature Research 2: 491–496.

    Google Scholar 

  28. Crump, B. C., E. V. Armbrust & J. A. Baross, 1999. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. Applied and Environmental Microbiology 65: 3192–3204.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Di Cesare, A., E. M. Eckert & G. Corno, 2016a. Co-selection of antibiotic and heavy metal resistance in freshwater bacteria. Journal of Limnology 75: 59–66.

    Article  Google Scholar 

  30. Di Cesare, A., E. M. Eckert, S. D’Urso, R. Bertoni, D. C. Gillan, R. Wattiez & G. Corno, 2016b. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Research 94: 208–214.

    Article  PubMed  Google Scholar 

  31. Dillon, P. J., R. D. Evans & L. A. Molot, 1990. Retention and resuspension of phosphorus, nitrogen, and iron in a central Ontario lake. Canadian Journal of Fisheries and Aquatic Sciences 47: 1269–1274.

    CAS  Article  Google Scholar 

  32. Drummond, J. D., R. J. Davies-Colley, R. Stott, J. P. Sukias, J. W. Nagels, A. Sharp & A. I. Packman, 2015. Microbial transport, retention, and inactivation in streams: a combined experimental and stochastic modeling approach. Environmental Science & Technology 49: 7825–7833.

    CAS  Article  Google Scholar 

  33. Du Preez, M., M. R. der Merwe, A. Cumbana & W. Le Roux, 2010. A survey of Vibrio cholerae O1 and O139 in estuarine waters and sediments of Beira, Mozambique. Water SA 36: 615–620.

    Google Scholar 

  34. Eckert, W. & A. Nishri, 2014. The phosphorus cycle. In Zohary, T., A. Sukenik, T. Berman & A. Nishri (eds), Lake Kinneret: Ecology and Management, Chapter 20. Springer, The Netherlands: 347–363.

  35. Eckert, W., J. Didenko, E. Uri & D. Eldar, 2003. Spatial and temporal variability of particulate phosphorus fractions in seston and sediments of Lake Kinneret under changing loading scenario. Hydrobiologia 494: 223–229.

    CAS  Article  Google Scholar 

  36. Edge, T. A., I. U. H. Khan, R. Bouchard, J. Guo, S. Hill, A. Locas, L. Moore, N. Neumann, E. Nowak, P. Payment, R. Yang, R. Yerubandi & S. Watson, 2013. Occurrence of waterborne pathogens and Escherichia coli at offshore drinking water intakes in lake Ontario. Applied and Environmental Microbiology 79: 5799–5813.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Ejarque, E., A. Freixa, E. Vazquez, A. Guarch, S. Amalfitano, S. Fazi, A. M. Romaní & A. Butturini, 2017. Quality and reactivity of dissolved organic matter in a Mediterranean river across hydrological and spatial gradients. Science of The Total Environment 599–600: 1802–1812.

    Article  PubMed  Google Scholar 

  38. European Communities Environmental Objectives, 2009. Surface waters regulations. 272

  39. European Union, 1998. 98/83/EC on the quality of water intented for human consumption. Adopted by the Council, on 3: 32–54.

  40. Evans, R. D., 1994. Empirical evidence of the importance of sediment resuspension in lakes. Hydrobiologia 284: 5–12.

    Article  Google Scholar 

  41. Fitzgerald, S. A., J. V. Klump, P. W. Swarzenski, R. A. Mackenzie & K. D. Richards, 2001. Beryllium-7 as a tracer of short-term sediment deposition and resuspension in the Fox River, Wisconsin. Environmental Science & Technology 35: 300–305.

    CAS  Article  Google Scholar 

  42. Fox, G. A., A. Sheshukov, R. Cruse, R. L. Kolar, L. Guertault, K. R. Gesch & R. C. Dutnell, 2016. Reservoir sedimentation and upstream sediment sources: perspectives and future research needs on streambank and gully erosion. Environmental Management 57: 945–955.

    CAS  Article  PubMed  Google Scholar 

  43. Freese, E., J. Köster & J. Rullkötter, 2008. Origin and composition of organic matter in tidal flat sediments from the German Wadden Sea. Organic Geochemistry 39: 820–829.

    CAS  Article  Google Scholar 

  44. Freixa, A., E. Ejarque, S. Crognale, S. Amalfitano, S. Fazi, A. Butturini & A. M. Romaní, 2016. Sediment microbial communities rely on different dissolved organic matter sources along a Mediterranean river continuum. Limnology and Oceanography 61: 1389–1405.

    CAS  Article  Google Scholar 

  45. Fries, J. S., R. T. Noble & G. W. Characklis, 2006. Attachment of fecal indicator bacteria to particles in the Neuse River Estuary, N.C. Journal of Environmental Engineering American Society of Civil Engineers 132: 1338–1345.

    CAS  Article  Google Scholar 

  46. Frindte, K., M. Allgaier, H. P. Grossart & W. Eckert, 2015. Microbial response to experimentally controlled redox transitions at the sediment water interface. PLoS ONE 10: 1–17.

    Article  Google Scholar 

  47. Frindte, K., M. Allgaier, H. P. Grossart & W. Eckert, 2016. Redox stability regulates community structure of active microbes at the sediment-water interface. Environmental Microbiology Reports 8: 798–804.

    Article  Google Scholar 

  48. García-Ruiz, J. M., J. I. López-Moreno, S. M. Vicente-Serrano, T. Lasanta–Martínez & S. Beguería, 2011. Mediterranean water resources in a global change scenario. Earth-Science Reviews 105: 121–139.

    Article  Google Scholar 

  49. Gasith, A., 1975. Tripton sedimentation in Eutrophic Lakes-sample correction for the resuspended matter. Verhandlungen Internationale Vereinigung Limnologie 19: 116–122.

    Google Scholar 

  50. Gasol, J. M., & X. A. G. Moran, 2015. Flow Cytometric Determination of Microbial Abundances and Its Use to Obtain Indices of Community Structure and Relative Activity. Hydrocarbon and Lipid Microbiology Protocols – Springer Protocols Handbooks 1–29.

  51. Gerbersdorf, S. U. & S. Wieprecht, 2015. Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture. Geobiology 13: 68–97.

    CAS  Article  PubMed  Google Scholar 

  52. Gerbersdorf, S. U., B. Westrich & D. M. Paterson, 2009. Microbial extracellular polymeric substances (EPS) in fresh water sediments. Microbial Ecology 58: 334–349.

    CAS  Article  PubMed  Google Scholar 

  53. Gordon, A. K. & C. G. Palmer, 2015. Defining an exposure-response relationship for suspended kaolin clay particulates and aquatic organisms: work toward defining a water quality guideline for suspended solids. Environmental Toxicology and Chemistry 34: 907–912.

    CAS  Article  PubMed  Google Scholar 

  54. Grabowski, R. C., I. G. Droppo & G. Wharton, 2011. Erodibility of cohesive sediment: the importance of sediment properties. Earth-Science Reviews 105: 101–120.

    Article  Google Scholar 

  55. Grathwohl, P., H. Rügner, T. Wöhling, K. Osenbrück, M. Schwientek, S. Gayler, U. Wollschläger, B. Selle, M. Pause, J.-O. Delfs, M. Grzeschik, U. Weller, M. Ivanov, O. A. Cirpka, U. Maier, B. Kuch, W. Nowak, V. Wulfmeyer, K. Warrach-Sagi, T. Streck, S. Attinger, L. Bilke, P. Dietrich, J. H. Fleckenstein, T. Kalbacher, O. Kolditz, K. Rink, L. Samaniego, H.-J. Vogel, U. Werban & G. Teutsch, 2013. Catchments as reactors: a comprehensive approach for water fluxes and solute turnover. Environmental Earth Sciences 69: 317–333.

    Article  Google Scholar 

  56. Grossart, H. P., 2010. Ecological consequences of bacterioplankton lifestyles: changes in concepts are needed. Environmental Microbiology Reports 2: 706–714.

    Article  PubMed  Google Scholar 

  57. Grossart, H.-P. & H. Ploug, 2000. Bacterial production and growth efficiencies: direct measurements on riverine aggregates. Limnology and Oceanography 45: 436–445.

    CAS  Article  Google Scholar 

  58. Grossart, H.-P. & M. Simon, 1998. Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquatic Microbial Ecology 15: 127–140.

    Article  Google Scholar 

  59. Hakanson, L., 2004. Internal loading: a new solution to an old problem in aquatic sciences. Lakes & Reservoirs: Research & Management 9: 3–23.

    CAS  Article  Google Scholar 

  60. Hall-Stoodley, L. & P. Stoodley, 2005. Biofilm formation and dispersal and the transmission of human pathogens. Trends in Microbiology 13: 7–10.

    CAS  Article  PubMed  Google Scholar 

  61. Hamilton, D. P. & S. F. Mitchell, 1996. An empirical model for sediment resuspension in shallow lakes. Hydrobiologia 317: 209–220.

    Article  Google Scholar 

  62. Hjulström, F., 1935. Studies of the morphological activity of rivers as illustrated by the River Fyris: Inaugural Dissertation. Almqvist & Wiksells.

  63. ISO5667-3, E., 2012. 5667-3: 2012. Water Quality–Sampling, Part A.

  64. Jacob, P., A. Henry, G. Meheut, N. Charni-Ben-Tabassi, V. Ingrand & K. Helmi, 2015. Health risk assessment related to waterborne pathogens from the river to the tap. International Journal of Environmental Research and Public Health 12: 2967–2983.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jeng, H. C., A. J. England & Henry B. Bradford, 2005. Indicator organisms associated with stormwater suspended particles and estuarine sediment. Journal of Environmental Science and Health, Part A 40: 779–791.

    CAS  Article  Google Scholar 

  66. Kemker, C., 2014. Turbidity, total suspended solids and water clarity. Fundamentals of Environmental Measurements. Fondriest Environmental, Inc 13.

  67. Kepkay, P. E., 1994. Particle aggregation and the biological reactivity of colloids. Marine Ecology Progress Series 109: 293–304.

    Article  Google Scholar 

  68. Kiørboe, T., H.-P. Grossart, H. Ploug & K. Tang, 2002. Mechanisms and rates of bacterial colonization of sinking aggregates. Applied and Environmental Microbiology 68: 3996–4006.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kleeberg, A., M. Hupfer, G. Gust, I. Salka, K. Pohlmann & H.-P. Grossart, 2013. Intermittent riverine resuspension: effects on phosphorus transformations and heterotrophic bacteria. Limnology and Oceanography 58: 635–652.

    CAS  Article  Google Scholar 

  70. Koski-Vähälä, J., H. Hartikainen & T. Kairesalo, 2000. Resuspension in regulating sedimentation dynamics in Lake Vesijärvi. Archiv für Hydrobiologie 148: 357–381.

    Article  Google Scholar 

  71. Liu, G., F. Q. Ling, E. J. van der Mark, X. D. Zhang, A. Knezev, J. Q. J. C. Verberk, W. G. J. van der Meer, G. J. Medema, W. T. Liu & J. C. van Dijk, 2016. Comparison of particle-associated bacteria from a drinking water treatment plant and distribution reservoirs with different water sources. Scientific Reports 6: 20367.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Lundkvist, M., M. Grue, P. L. Friend & M. R. Flindt, 2007. The relative contributions of physical and microbiological factors to cohesive sediment stability. Continental Shelf Research 27: 1143–1152.

    Article  Google Scholar 

  73. Lyons, M. M., J. E. Ward, H. Gaff, R. E. Hicks, J. M. Drake & F. C. Dobbs, 2010. Theory of island biogeography on a microscopic scale: organic aggregates as islands for aquatic pathogens. Aquatic Microbial Ecology 60: 1–13.

    Article  Google Scholar 

  74. MacGregor, B. J., D. P. Moser, B. J. Baker, E. W. Alm, M. Maurer, K. H. Nealson & D. A. Stahl, 2001. Seasonal and spatial variability in Lake Michigan sediment small-subunit rRNA concentrations. Applied and environmental microbiology 67: 3908–3922.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Mahler, B. J., J. C. Personn, G. F. Lods & C. Drogue, 2000. Transport of free and particulate-associated bacteria in karst. Journal of Hydrology 238: 179–193.

    Article  Google Scholar 

  76. Malfatti, F. & F. Azam, 2009. Atomic force microscopy reveals microscale networks and possible symbioses among pelagic Marine Bacteria. Aquatic Microbial Ecology 58: 1–14.

    Article  Google Scholar 

  77. Mamane, H., 2008. Impact of particles on UV disinfection of water and wastewater effluents: a review. Reviews in Chemical Engineering 24: 67.

    CAS  Article  Google Scholar 

  78. Mestre, M., E. Borrull, M. M. Sala & J. M. Gasol, 2017. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. The ISME Journal 11: 999–1010.

    Article  PubMed  Google Scholar 

  79. Niederdorfer, R., H. Peter & T. J. Battin, 2016. Attached biofilms and suspended aggregates are distinct microbial lifestyles emanating from differing hydraulics. Nature Microbiology 1: 161–178.

    Article  Google Scholar 

  80. Official Journal of the European Union, 2009. Commission Directive 2009/90/EC laying down, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, technical specifications for chemical analysis and monitoring of water status. 201: 36–38.

  81. Ortega-Retuerta, E., F. Joux, W. H. Jeffrey & J.-F. Ghiglione, 2013. Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic). Biogeosciences 10: 2747–2759.

    Article  Google Scholar 

  82. Quinteiro, P., A. C. Dias, A. Araújo, J. L. T. Pestana, B. G. Ridoutt & L. Arroja, 2015. Suspended solids in freshwater systems: characterisation model describing potential impacts on aquatic biota. International Journal of Life Cycle Assessment 20: 1232–1242.

    CAS  Article  Google Scholar 

  83. Ransom, B., R. H. Bennett, R. Baerwald, M. H. Hulbert & P. J. Burkett, 1999. In situ conditions and interactions between microbes and minerals in fine-grained marine sediments: a TEM microfabric perspective. American Mineralogist 84: 183–192.

    CAS  Article  Google Scholar 

  84. Reardon, K. E., P. A. Moreno-Casas, F. A. Bombardelli & S. G. Schladow, 2016. Seasonal nearshore sediment resuspension and water clarity at Lake Tahoe. Lake and Reservoir Management 32: 132–145.

    CAS  Article  Google Scholar 

  85. Rieck, A., D. P. R. Herlemann, K. Jürgens & H.-P. Grossart, 2015. Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea. Frontiers in Microbiology 6: 1297.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Riemann, L. & A. Winding, 2001. Community dynamics of free-living and particle-associated bacterial assemblages during a freshwater phytoplankton bloom. Microbial Ecology 42: 274–285.

    CAS  Article  PubMed  Google Scholar 

  87. Rink, B., T. Martens, D. Fischer, A. Lemke, H.-P. Grossart, M. Simon & T. Brinkhoff, 2008. Short-term dynamics of bacterial communities in a tidally affected coastal ecosystem. FEMS Microbiology Ecology 66: 306–319.

    CAS  Article  PubMed  Google Scholar 

  88. Ritchie, J. C. & J. R. McHenry, 1990. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. Journal of Environmental Quality 19: 215–233.

    CAS  Article  Google Scholar 

  89. Romani, A. M., S. Amalfitano, J. Artigas, S. Fazi, S. Sabater, X. Timoner, I. Ylla & A. Zoppini, 2013. Microbial biofilm structure and organic matter use in mediterranean streams. Hydrobiologia 719: 43–58.

    CAS  Article  Google Scholar 

  90. Rosa, F., 1985. Sedimentation and sediment resuspension in Lake Ontario. Journal of Great Lakes Research 11: 13–25.

    CAS  Article  Google Scholar 

  91. Sajeesh, P. & A. K. Sen, 2014. Particle separation and sorting in microfluidic devices: a review. Microfluidics and Nanofluidics 17: 1–52.

    Article  Google Scholar 

  92. Sass, H., H. Cypionka & H.-D. Babenzien, 1997. Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin. FEMS Microbiology Ecology 22: 245–255.

    CAS  Article  Google Scholar 

  93. Schwarz, J. I. K., W. Eckert & R. Conrad, 2007a. Community structure of Archaea and Bacteria in a profundal lake sediment Lake Kinneret (Israel). Systematic and Applied Microbiology 30: 239–254.

    CAS  Article  PubMed  Google Scholar 

  94. Schwarz, J. I. K., T. Lueders, W. Eckert & R. Conrad, 2007b. Identification of acetate-utilizing Bacteria and Archaea in methanogenic profundal sediments of Lake Kinneret (Israel) by stable isotope probing of rRNA. Environmental Microbiology 9: 223–237.

    CAS  Article  PubMed  Google Scholar 

  95. Simon, M., H. P. Grossart, B. Schweitzer & H. Ploug, 2002. Microbial ecology of organic aggregates in aquatic ecosystems. Aquatic Microbial Ecology 28: 175–211.

    Article  Google Scholar 

  96. Singh, G., P. Vajpayee, S. Ram & R. Shanker, 2010. Environmental reservoirs for enterotoxigenic Escherichia coli in south Asian Gangetic riverine system. Environmental Science & Technology 44: 6475–6480.

    CAS  Article  Google Scholar 

  97. Sobolev, D., K. Moore & A. L. Morris, 2009. Nutrients and light limitation of phytoplankton biomass in a turbid southeastern reservoir: implications for water quality. Southeastern Naturalist 8: 255–266.

    Article  Google Scholar 

  98. Staats, N., L. J. Stal & L. R. Mur, 2000. Exopolysaccharide production by the epipelic diatom Cylindrotheca closterium: effects of nutrient conditions. Journal of Experimental Marine Biology and Ecology 249: 13–27.

    CAS  Article  PubMed  Google Scholar 

  99. Tang, K. W., C. Dziallas & H. P. Grossart, 2011. Zooplankton and aggregates as refuge for aquatic bacteria: protection from UV, heat and ozone stresses used for water treatment. Environmental Microbiology 13: 378–390.

    CAS  Article  PubMed  Google Scholar 

  100. Vercruysse, K., R. C. Grabowski & R. J. Rickson, 2017. Suspended sediment transport dynamics in rivers: multi-scale drivers of temporal variation. Earth-Science Reviews 166: 38–52.

    Article  Google Scholar 

  101. Walters, E., K. Schwarzwälder, P. Rutschmann, E. Müller & H. Horn, 2014. Influence of resuspension on the fate of fecal indicator bacteria in large-scale flumes mimicking an oligotrophic river. Water Research 48: 466–477.

    CAS  Article  PubMed  Google Scholar 

  102. Weyhenmeyer, G. A., 1996. The influence of stratification on the amount and distribution of different settling particles in Lake Erken. Canadian Journal of Fisheries and Aquatic Sciences 53: 1254–1262.

    Article  Google Scholar 

  103. Wood, M. S., 2014. Estimating suspended sediment in rivers using acoustic Doppler meters. US Geological Survey Fact Sheet 3038

  104. Wotton, R. S., 2007. Do benthic biologists pay enough attention to aggregates formed in the water column of streams and rivers? Journal of the North American Benthological Society 26: 1–11.

    Article  Google Scholar 

  105. Yang, W., M. Chen, X. Zhang, Z. Guo, G. Li, Q. Ma, J. Yang & Y. Huang, 2013. Thorium isotopes (228Th, 230Th, 232Th) and applications in reconstructing the Yangtze and Yellow River floods. International Journal of Sediment Research 28: 588–595.

    Article  Google Scholar 

  106. Zhang, Y., W. Xiao & N. Jiao, 2016. Linking biochemical properties of particles to particle-attached and free-living bacterial community structure along the particle density gradient from freshwater to open ocean. Journal of Geophysical Research G: Biogeosciences 121: 2261–2274.

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Short-Term Mobility programme of the CNR (Italy). HPG was supported by two Grants from the German Science Foundation (DFG GR1540/23-1 and GR1540/28-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefano Amalfitano.

Additional information

Guest editors: Koen Martens, Sidinei M. Thomaz, Diego Fontaneto & Luigi Naselli-Flores / Emerging Trends in Aquatic Ecology II

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amalfitano, S., Corno, G., Eckert, E. et al. Tracing particulate matter and associated microorganisms in freshwaters. Hydrobiologia 800, 145–154 (2017). https://doi.org/10.1007/s10750-017-3260-x

Download citation

Keywords

  • Total suspended solids
  • Resuspended particulate
  • Turbidity
  • Sediment traps
  • Particle-associated microorganisms
  • Pathogens