, Volume 802, Issue 1, pp 23–38 | Cite as

Seasonal effect of zebra mussel colonies on benthic processes in the temperate mesotrophic Plateliai Lake, Lithuania

  • T. Ruginis
  • M. Zilius
  • I. Vybernaite-Lubiene
  • J. Petkuviene
  • Marco BartoliEmail author
Primary Research Paper


Sparse colonies of zebra mussel (Dreissena polymorpha) create net heterotrophic sediment patches via respiration, excretion, and biodeposition activities, but their effect as biogeochemical hotspots is scarcely investigated in nutrient-limited ecosystems. We analyzed the seasonal effect of zebra mussel colonies on benthic respiration (O2, TCO2, N2, and CH4) and nutrient fluxes (NH4 +, NO x , SRP, and SiO2) in a macrophyte-dominated mesotrophic temperate lake. Intact sediments with and without zebra mussel aggregates were collected in winter, summer, and autumn, and incubated to measure fluxes. The contribution of mussel colonies alone to benthic metabolism was also quantified. Sediments with mussels always had higher rates of respiration (O2 and TCO2) and nutrient recycling (NH4 + and SRP) as compared to bare sediments, while there was no effect on CH4, NO3 , and SiO2 fluxes. Mussel colonies stimulated nitrogen removal via denitrification, but only in the summer. The effect of colonies was particularly evident in warmer periods, due to mussel respiration and excretion and to biodeposits that increased microbial activity in sediments. In this mesotrophic lake, mussel aggregates contribute to alleviate nutrient (N and P) limitation, but their heterotrophic activity is likely buffered by nutrient uptake and oxygen production by submersed vegetation.


Zebra mussel Sediment Respiration Excretion Nutrients Seasonality 



The research was supported by the Research Council of Lithuania, Dreissena project, No. LEK-12023. We kindly acknowledge Rūta Barisevičiūtė for organic carbon and nitrogen measurements and Diana Vaičiūtė for chlorophyll and phytoplankton analysis. We gratefully thank Arūnas Vainora for skilful assistance in under ice diving.


  1. Aldridge, D. W., B. S. Payne & A. C. Miller, 1995. Oxygen consumption, nitrogenous excretion, and filtration rates of Dreissena polymorpha at acclimation temperatures between 20 and 32 °C. Canadian Journal of Fisheries and Aquatic Sciences 52(8): 1761–1767.CrossRefGoogle Scholar
  2. Alexander Jr., J. E. & R. F. McMahon, 2004. Respiratory response to temperature and hypoxia in the zebra mussel Dreissena polymorpha. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 137(2): 425–434.CrossRefGoogle Scholar
  3. Anderson, L. G., P. O. J. Hall, A. Iverfeldt, M. M. R. Van Der Loeff, B. Sundby & S. F. G. Westerlund, 1986. Benthic respiration measured by total carbonate production. Limnology and Oceanography 31: 319–329.CrossRefGoogle Scholar
  4. APHA (American Public Health Association), 1975. In Standard methods for the examination of water and wastewaters, 14th edn. APHA, WashingtonGoogle Scholar
  5. Armenio, P. M., C. M. Mayer, S. A. Heckathorn, T. B. Bridgeman & S. E. Panek, 2016. Resource contributions from dreissenid mussels to the benthic algae Lyngbya wollei (Cyanobacteria) and Cladophora glomerata (Chlorophyta). Hydrobiologia 763(1): 35–51.CrossRefGoogle Scholar
  6. Arnott, L. D. & M. J. Vanni, 1996. Nitrogen and phosphorus recycling by the zebra mussel (Dreissena polymorpha) in the western basin of Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 53: 646–659.CrossRefGoogle Scholar
  7. Atkinson, C. L., C. C. Vaughn, K. J. Forshay & J. T. Cooper, 2013. Aggregated filter-feeding consumers alter nutrient limitation: consequences for ecosystem and community dynamics. Ecology 94(6): 1359–1369.CrossRefPubMedGoogle Scholar
  8. Barker, S. M., J. S. Levinton, J. P. Kurdziel & S. E. Shumway, 1998. Selective feeding and biodeposition by zebra mussels and their relation to changes in phytoplankton composition and seston load. Journal of Shellfish Research 17(4): 1207–1213.Google Scholar
  9. Bayne, B. L., 1976. Aspects of reproduction in bivalve molluscs. In Wiley, M. (ed.), Estuarine Processes, Vol. I. Academic Press, New York: 432–448.CrossRefGoogle Scholar
  10. Benelli, S., M. Bartoli, E. Racchetti, P. C. Moraes, M. Zilius, I. Lubiene & E. A. Fano, 2017. Rare but large bivalves alter benthic respiration and nutrient recycling in riverine sediments. Aquatic Ecology. doi: 10.1007/s10452-016-9590-3.Google Scholar
  11. Bengtsson, L., 1996. Mixing in ice-covered lakes. Hydrobiologia 322: 91–97.CrossRefGoogle Scholar
  12. Beutler, M., K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen & H. Dau, 2002. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynthesis Research 72(1): 39–53.CrossRefPubMedGoogle Scholar
  13. Bootsma, H. & Q. Liao, 2013. Nutrient cycling by dreissenid mussels. In Nalepa, T. F. & D. W. Schloesser (eds), Quagga and Zebra Mussels. CRC Press, New York: 555–574.CrossRefGoogle Scholar
  14. Bower, C. E. & T. Holm-Hansen, 1980. A salicylate-hypochlorite method for determining ammonia in seawater. Canadian Journal of Fisheries and Aquatic Sciences 37(5): 794–798.CrossRefGoogle Scholar
  15. Bruesewitz, D. A., J. L. Tank, M. J. Bernot, W. B. Richardson & E. A. Strauss, 2006. Seasonal effects of the zebra mussel (Dreissena polymorpha) on sediment denitrification rates in Pool 8 of the Upper Mississippi River. Canadian Journal of Fisheries and Aquatic Sciences 63(5): 957–969.CrossRefGoogle Scholar
  16. Bykova, O., A. Laursen, V. Bostan, J. Bautista & L. McCarthy, 2006. Do zebra mussels (Dreissena polymorpha) alter lake water chemistry in a way that favours Microcystis growth? Science of the Total Environment 371(1–3): 362–372.CrossRefPubMedGoogle Scholar
  17. Buzin, F., B. Dupuy, S. Lefebvre, L. Barillé & J. Haure, 2015. Storage of Pacific oysters Crassostrea gigas in recirculating tank: ammonia excretion and potential nitrification rates. Aquacultural Engineering 64: 8–14.CrossRefGoogle Scholar
  18. Caraco, N. F., J. J. Cole, P. A. Raymond, D. L. Strayer, M. L. Pace, S. E. Findlay & D. T. Fischer, 1997. Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78(2): 588–602.CrossRefGoogle Scholar
  19. Caraco, N. F., J. J. Cole, S. E. G. Findlay, D. T. Fischer, G. G. Lampman, M. L. Pace & D. L. Strayer, 2000. Dissolved oxygen declines in the Hudson River associated with the invasion of the zebra mussel (Dreissena polymorpha). Environmental Science and Technology 34(7): 1204–1210.CrossRefGoogle Scholar
  20. Catherine, A., N. Escoffier, A. Belhocine, A. B. Nasri, S. Hamlaoui, C. Yéprémian, C. Bernard & M. Troussellier, 2012. On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs. Water Research 46(6): 1771–1784.CrossRefPubMedGoogle Scholar
  21. Conroy, J. D. & D. A. Culver, 2005. Do dreissenid mussels affect Lake Erie ecosystem stability processes? American Midland Naturalist 153(1): 20–32.CrossRefGoogle Scholar
  22. Conroy, J. D., W. J. Edwards, R. A. Pontius, D. D. Kane, H. Zhang, J. F. Shea & A. Culver, 2005. Soluble nitrogen and phosphorus excretion of exotic freshwater mussels (Dreissena spp.): potential impacts for nutrient remineralization in western Lake Erie. Freshwater Biology 50: 1146–1162.CrossRefGoogle Scholar
  23. Dalsgaard, T., L. P. Nielsen, V. Brotas, P. Viaroli, G. Underwood, D. Nedwell, K. Sundbäck, S. Rysgaard, A. Miles, M. Bartoli, L. Dong, D. C. O. Thornton, L. D. M. Ottossen, G. Castaldelli & N. Risgaard-Petersen, 2000. Protocol handbook for NICE-Nitrogen Cycling In Estuaries. A project under the EU research programme: marine science and technology (MAST III). Silkeborg: National Environmental Research Institute.Google Scholar
  24. Eyre, B. D. & A. J. P. Ferguson, 2005. Benthic metabolism and nitrogen cycling in a subtropical east Australian estuary (Brunswick): temporal variability and controlling factors. Limnology and Oceanography 50: 81–96.CrossRefGoogle Scholar
  25. Fanslow, D. L., T. F. Nalepa & T. H. Johengen, 2001. Seasonal changes in the respiratory electron transport system (ETS) and respiration of the zebra mussel, Dreissena polymorpha in Saginaw Bay, Lake Huron. Hydrobiologia 448: 61–70.CrossRefGoogle Scholar
  26. Fulweiler, R. W., S. M. Brown, S. W. Nixon & B. D. Jenkins, 2013. Evidence and a conceptual model for the co-occurrence of nitrogen fixation and denitrification in heterotrophic marine sediments. Marine Ecology Progress Series 482: 57–68.CrossRefGoogle Scholar
  27. Gabbott, P. A., 1983. Developmental and seasonal metabolic activities in marine molluscs. The mollusca 2: 165–217.CrossRefGoogle Scholar
  28. Gardner, W. S., J. F. Cavaletto, T. H. Johengen, J. R. Johnson, R. T. Heath & J. B. Cotner, 1995. Effects of the zebra mussel, Dreissena polymorpha, on community nitrogen dynamics in Saginaw Bay, Lake Huron. Journal of Great Lakes Research 21: 529–544.CrossRefGoogle Scholar
  29. Gardner, W. S., L. Yang, J. B. Cotner, T. H. Johengen & P. J. Lavrentyev, 2001. Nitrogen dynamics in sandy freshwater sediments (Saginaw Bay, Lake Huron). Journal of Great Lakes Research 27(1): 84–97.CrossRefGoogle Scholar
  30. Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis, 2nd ed. Verlag Chemie, Weinheim.Google Scholar
  31. Hardenbicker, P., M. Weitere, P. Fink & H. Hillebrand, 2015. Effects of temperature on the interaction between phytoplankton communities and benthic filter feeders. Fundamental and Applied Limnology/Archiv für Hydrobiologie 187(2): 87–100.CrossRefGoogle Scholar
  32. Hecky, R. E., R. E. H. Smith, D. R. Barton, S. J. Guildford, W. D. Taylor, M. N. Charlton & T. Howell, 2004. The nearshore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 61(7): 1285–1293.CrossRefGoogle Scholar
  33. Heisterkamp, I. M., A. Schramm, L. H. Larsen, N. B. Svenningsen, G. Lavik, D. de Beer & P. Stief, 2013. Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance. Environmental Microbiology 15(7): 1943–1955.CrossRefPubMedGoogle Scholar
  34. Higgins, S. N. & M. J. Vander Zanden, 2010. What a difference a species makes: a meta–analysis of dreissenid mussel impacts on freshwater ecosystems. Ecological Monographs 80(2): 179–196.CrossRefGoogle Scholar
  35. Holland, R. E., 1993. Changes in planktonic diatoms and water transparency in Hatchery Bay, Bass Island Area, Western Lake Erie since the establishment of the zebra mussel. Journal of Great Lakes Research 19: 617–624.CrossRefGoogle Scholar
  36. Humphries, A. T., S. G. Ayvazian, J. C. Carey, B. T. Hancock, S. Grabbert, D. Cobb, Ch J Strobel & R. W. Fulweiler, 2016. Directly measured denitrification reveals oyster aquaculture and restored oyster reefs remove nitrogen at comparable high rates. Frontiers in Marine Science. doi: 10.3389/fmars.2016.00074.Google Scholar
  37. Kana, T., Ch Darkangelo, D. M. Hunt & J. Cornwell, 1994. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Analytical Chemistry 66(23): 41166–44170.CrossRefGoogle Scholar
  38. Karatayev, Y. A., L. E. Burlakova & D. K. Padilla, 1998. Physical factors that limit the distribution and abundance of Dreissena polymorpha (Pall.). Journal of Shellfish Research 17: 1219–1235.Google Scholar
  39. Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 2014. Zebra versus quagga mussels: a review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746(1): 97–112.CrossRefGoogle Scholar
  40. Kellogg, M. L., J. C. Cornwell, M. S. Owens & K. T. Paynter, 2013. Denitrification and nutrient assimilation on a restored oyster reef. Marine Ecology Progress Series 480: 1–19.CrossRefGoogle Scholar
  41. Kumar, R., D. Varkey & T. Pitcher, 2016. Simulation of zebra mussels (Dreissena polymorpha) invasion and evaluation of impacts on Mille Lacs Lake, Minnesota: an ecosystem model. Ecological Modelling 331: 68–76.CrossRefGoogle Scholar
  42. Lavrentyev, P. J., W. S. Gardner & L. Yang, 2000. Effects of the zebra mussel on nitrogen dynamics and the microbial community at the sediment-water interface. Aquatic Microbial Ecology 21: 187–194.CrossRefGoogle Scholar
  43. Lee, P. O., S. L. McLellan, L. E. Graham & E. B. Young, 2015. Invasive dreissenid mussels and benthic algae in Lake Michigan: characterizing effects on sediment bacterial communities. FEMS Microbiology Ecology. doi: 10.1093/femsec/fiu001.Google Scholar
  44. MacDonald, B. A. & J. E. Ward, 2009. Feeding activity of scallops and mussels measured simultaneously in the field: repeated measures sampling and implications for modelling. Journal of Experimental Marine Biology and Ecology 371: 42–50.CrossRefGoogle Scholar
  45. Martin, S., G. Thouzeau, M. Richard, L. Chauvaud, F. Jean & J. Clavier, 2007. Benthic community respiration in areas impacted by the invasive mollusk Crepidula fornicata. Marine Ecology Progress Series 347: 51–60.CrossRefGoogle Scholar
  46. McMahon, R. F., 1996. The physiological ecology of the zebra mussel, Dreissena polymorpha, in North America and Europe. American Zoologist 36: 339–363.CrossRefGoogle Scholar
  47. Mellina, E., J. B. Rasmussen & E. L. Mills, 1995. Impact of zebra mussel (Dreissena polymorpha) on phosphorus cycling and chlorophyll in lakes. Canadian Journal of Fisheries and Aquatic Sciences 52: 2553–2573.CrossRefGoogle Scholar
  48. Naddafi, R., K. Pettersson & P. Eklöv, 2008. Effects of the zebra mussel, an exotic freshwater species, on seston stoichiometry. Limnology and Oceanography 53(5): 1973–1987.CrossRefGoogle Scholar
  49. Nepala, T. F., W. S. Gardner & J. M. Malczyk, 1991. Phosphorus cycling by mussels (Unionidae: Bivalvia) in Lake St. Clair. Hydrobiologia 219: 239–250.CrossRefGoogle Scholar
  50. Newell, R. I. E., 2004. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. Journal of Shellfish Research 23(1): 51–61.Google Scholar
  51. Nishizaki, M. & J. D. Ackerman, 2017. Mussels blow rings: jet behavior affects local mixing. Limnology and Oceanography 62: 125–136.CrossRefGoogle Scholar
  52. Ozersky, T., D. R. Barton, R. E. Hecky & S. J. Guildford, 2013. Dreissenid mussels enhance nutrient efflux, periphyton quantity and production in the shallow littoral zone of a large lake. Biological Invasions 15: 2799–2810.CrossRefGoogle Scholar
  53. Ozersky, T., D. O. Evans & B. K. Ginn, 2015. Invasive mussels modify the cycling, storage and distribution of nutrients and carbon in a large lake. Freshwater Biology 60(4): 827–843.CrossRefGoogle Scholar
  54. Ruginis, T., M. Bartoli, J. Petkuviene, M. Zilius, I. Lubiene, A. Laini & A. Razinkovas-Baziukas, 2014. Benthic respiration and stoichiometry of regenerated nutrients in lake sediments with Dreissena polymorpha. Aquatic Sciences 76(3): 405–417.CrossRefGoogle Scholar
  55. Schindler, D. E. & M. D. Scheuerell, 2002. Habitat coupling in lake ecosystems. Oikos 98(2): 177–189.CrossRefGoogle Scholar
  56. Smit, H. A., B. de Vaate & A. Fioole, 1992. Shell growth of the zebra mussel [Dreissena polymorpha (Pallas)] in relation to selected physiochemical parameters in Lower Rhine and some associated lakes. Archive fur Hydrobiologie 124: 257–280.Google Scholar
  57. Svenningsen, N. B., I. M. Heisterkamp, M. Sigby-Clausen, L. H. Larsen, L. P. Nielsen, P. Stief & A. Schram, 2012. Shell biofilm nitrification and gut denitrification contribute to emission of nitrous oxide by the invasive freshwater mussel Dreissena polymorpha (Zebra Mussel). Applied and Environmental Microbiology 78(12): 4505–4509.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Traganza, E. D., J. W. Swinnerton & C. H. Cheek, 1979. Methane supersaturation and ATP-zooplankton blooms in near-surface waters of the western Mediterranean and the subtropical North Atlantic Ocean. Deep Sea Research Part A 26: 1237–1245.CrossRefGoogle Scholar
  59. Turner, C. B., 2010. Influence of zebra (0) and quagga (Dreissena rostriformis) mussel invasions on benthic nutrient and oxygen dynamics. Canadian Journal of Fisheries and Aquatic Sciences 67: 1899–1908.CrossRefGoogle Scholar
  60. Weiss, R. F., 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Research and Oceanographic Abstracts 17(4): 721–735.CrossRefGoogle Scholar
  61. Welsh, D. T. & G. Castadelli, 2004. Bacterial nitrification activity directly associated with isolated benthic marine animals. Marine Biology 144: 1029–1037.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Klaipeda UniversityKlaipedaLithuania
  2. 2.Lithuanian Sea MuseumKlaipedaLithuania
  3. 3.Department of Chemistry, Life Sciences and Environmental SustainabilityParma UniversityParmaItaly

Personalised recommendations