Skip to main content

Advertisement

Log in

Drivers of phytoplankton richness and diversity components in Neotropical floodplain lakes, from small to large spatial scales

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Understanding the distribution patterns of species and how spatial and environmental factors drive the structure of communities is crucial to the preservation of biodiversity. We evaluate, during the low and high water periods, the phytoplankton diversity in lakes of four Brazilian floodplain systems (FPs): Amazon, Araguaia, Pantanal, and Paraná. We hypothesized that (i) species variation/replacement among floodplains (β2) is the predominant mechanism in shaping phytoplankton gamma diversity; (ii) the variation in phytoplankton taxonomic composition within each floodplain (β1) is mainly governed by local environmental conditions due to the high dispersal ability of phytoplankton at small spatial scales; and (iii) variation in the phytoplankton taxonomic composition among floodplains (β2) is mainly influenced by dispersal limitation. Variation partitioning was used to evaluate the influence of spatial and environmental factors on species richness. Higher γ diversity was found in the Araguaia and Amazon FPs. The high contribution of β2 (large scale) to γ diversity revealed the high degree of environmental heterogeneity in each floodplain. β1 (small scale) was more influenced by environmental variables, and β2 by both spatial and environmental factors. Our findings showed that γ diversity was explained by the interaction between the two factors, and that these processes influencing variation were scale dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostinho, A. A., L. C. Gomes, S. M. Thomaz, & N. S. Hahn, 2004. The upper Paraná river and its floodplain: main characteristics and perspectives for management and conservation In Thomaz, S. M., A. Agostinho & N. S. Hanh (eds), The Upper Paraná River and Its Floodplain: Physical Aspects, Ecology and Conservation. Backhuys Publishers, Leiden: 394.

  • Albrecht, C. & T. Wilke, 2008. Ancient Lake Ohrid: biodiversity and evolution. Hydrobiologia 615: 103–140.

    Article  Google Scholar 

  • Allan, J. D., 1975. Components of diversity. Oecologia 18: 359–367.

    Article  PubMed  Google Scholar 

  • Almeida, F. F. & S. Melo, 2011. Phytoplankton community structure in an Amazon floodplain lake (Lago Catalão, Amazonas, Brazil). Neotropical Biology and Conservation 6: 112–123.

    Article  Google Scholar 

  • Arrieira, R. L., L. T. F. Schwind, C. C. Bonecker & F. A. Lansac-Tôha, 2017. Environmental factors exert predominant effects on testate amoeba metacommunities during droughts in floodplains. Austral Ecology 42: 210–217.

    Article  Google Scholar 

  • Baas-Becking, L. G. M., 1934. Geobiologie, of Inleiding Tot de Milieukunde. Met Literatuurlijst en Ind, Van Stockum.

  • Beisner, B. E., P. R. Peres-Neto, E. S. Lindström, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.

    Article  PubMed  Google Scholar 

  • Bicudo, C. E. & M. Menezes, 2006. Gêneros de algas de águas continentais do Brasil: chave para identificação e descrições. Editora RIMA, São Carlos.

    Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008. Modelling directional spatial processes in ecological data. Ecological Modelling 215: 325–336.

    Article  Google Scholar 

  • Bortolini, J. C., L. C. Rodrigues, S. Jati & S. Train, 2014. Phytoplankton functional and morphological groups as indicators of environmental variability in a lateral channel of the Upper Paraná River floodplain. Acta Limnologica Brasiliensia 26: 98–108.

    Article  Google Scholar 

  • Bovo-Scomparin, V. M., S. Train & L. C. Rodrigues, 2013. Influence of reservoirs on phytoplankton dispersion and functional traits: a case study in the Upper Paraná River, Brazil. Hydrobiologia 702: 115–127.

    Article  CAS  Google Scholar 

  • Cardoso, S. J., F. Roland, S. M. Loverde-Oliveira & V. L. de M. Huszar, 2012. Phytoplankton abundance, biomass and diversity within and between Pantanal wetland habitats. Limnologica Elsevier GmbH. 42: 235–241.

    Article  Google Scholar 

  • Carvalho, P., L. M. Bini, S. M. Thomaz, L. G. de Oliveira, B. Robertson, L. G. Tavechio & A. J. Darwisch, 2001. Comparative limnology of South American floodplain lakes and lagoons. Acta Scientiarum 23: 265–273.

    Google Scholar 

  • Chrisostomou, A., M. Moustaka-Gouni, S. Sgardelis & T. Lanaras, 2009. Air-dispersed phytoplankton in a mediterranean river-reservoir system (aliakmon-polyphytos, Greece). Journal of Plankton Research 31: 877–884.

    Article  CAS  Google Scholar 

  • Cole, A. G., 1994. Textbook of Limnology. Waveland Press Inc, Illinois.

    Google Scholar 

  • Crist, T. O., J. A. Veech, J. C. Gering & K. S. Summerville, 2003. Partitioning species diversity across landscapes and regions: a hierarchical analysis of alpha, beta, and gamma diversity. The American Naturalist 162: 734–743.

    Article  PubMed  Google Scholar 

  • De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747.

    Article  PubMed  Google Scholar 

  • Declerck, S., T. De Bie, D. Ercken, H. Hampel, S. Schrijvers, J. Van Wichelen, V. Gillard, R. Mandiki, B. Losson, D. Bauwens, S. Keijers, W. Vyverman, B. Goddeeris, L. De meester, L. Brendonck & K. Martens, 2006. Ecological characteristics of small farmland ponds: associations with land use practices at multiple spatial scales. Biological Conservation 131: 523–532.

    Article  Google Scholar 

  • Declerck, S. A. J., C. Winter, J. B. Shurin, C. A. Suttle & B. Matthews, 2013. Effects of patch connectivity and heterogeneity on metacommunity structure of planktonic bacteria and viruses. International Society for Microbial Ecology Journal Nature Publishing Group 7: 533–542.

    Google Scholar 

  • Dias, J. D., N. R. Simões, M. Meerhoff, F. A. Lansac-Tôha, L. F. M. Velho & C. C. Bonecker, 2016. Hydrological dynamics drives zooplankton metacommunity structure in a Neotropical floodplain. Hydrobiologia 1: 16–28.

    Google Scholar 

  • Dittrich, J., J. D. Dias, C. C. Bonecker, F. A. Lansac-Tôha & A. A. Padial, 2016. Importance of temporal variability at different spatial scales for diversity of floodplain aquatic communities. Freshwater Biology 61: 316–327.

    Article  Google Scholar 

  • Esteves, F. A., 2011. Fundamentos de Limnologia. Interciência, Rio de Janeiro.

    Google Scholar 

  • Fenchel, T. & B. J. Finlay, 2004. The ubiquity of small species: patterns of local and global diversity. BioScience 54: 777.

    Article  Google Scholar 

  • Finlay, B. J., 2002. Global dispersal of free-living microbial eukaryote species. Science 296: 1061–1063.

    Article  CAS  PubMed  Google Scholar 

  • Gaston, K. J., 2000. Global patterns in biodiversity. Nature 405: 220–227.

    Article  CAS  PubMed  Google Scholar 

  • Genitsaris, S., K. A. Kormas & M. Moustaka-Gouni, 2011. Airborne algae and cyanobacteria: occurrence and related health effects. Frontiers in Bioscience 3: 772–787.

    Google Scholar 

  • Giné, M. F., H. Bergamin, E. A. Zagatto & B. F. Reis, 1980. Simultaneous determination of nitrate and nitrite by flow injection analysis. Analytica Chimica Acta 114: 191–197.

    Article  Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. Ohstad, 1978. Methods for Physical and Chemical Analysis of Fresh Water. Blackwell Scientific Publication, Oxford.

    Google Scholar 

  • Heino, J., L. M. Bini, S. M. Karjalainen, H. Mykrä, J. Soininen, L. C. G. Vieira & J. A. F. Diniz-Filho, 2010. Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams? Oikos 119: 129–137.

    Article  Google Scholar 

  • Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869.

    Article  Google Scholar 

  • Hepp, L. U. & A. S. Melo, 2013. Dissimilarity of stream insect assemblages: effects of multiple scales and spatial distances. Hydrobiologia 703: 239–246.

    Article  Google Scholar 

  • Huszar, V. L. M., J. C. Nabout, M. O. Appel, J. B. O. Santos, D. S. Abe & L. H. S. Silva, 2015. Environmental and not spatial processes (directional and non-directional) shape the phytoplankton composition and functional groups in a large subtropical river basin. Journal of Plankton Research 13: 1–11.

    Google Scholar 

  • Incagnone, G., F. Marrone, R. Barone, L. Robba & L. Naselli-Flores, 2015. How do freshwater organisms cross the dry ocean? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia 750: 103–123.

    Article  Google Scholar 

  • INMET – Instituto Nacional de Meteorologia, 2016. BDMEP – Banco de Dados Meteorológicos para Ensino e Pesquisa. http://www.inmet.gov.br/. Accessed 15 December 2016.

  • Izaguirre, I., J. F. Saad, M. R. Schiaffino, A. Vinocur, G. Tell, M. L. Sánchez, L. Allende & R. Sinistro, 2015. Drivers of phytoplankton diversity in Patagonian and Antarctic lakes across a latitudinal gradient (2150 km): the importance of spatial and environmental factors. Hydrobiologia 764: 157–170.

    Article  Google Scholar 

  • Jati, S., L. C. Rodrigues, J. C. Bortolini, A. C. M. Paula, G. A. Moresco, L. M. Reis, B. F. Zanco & S. Train, 2014. First record of the occurrence of Ceratium furcoides (Levander) Langhans (Dinophyceae) in the Upper Paraná River Floodplain (PR/MS), Brazil. Brazilian Journal of Biology 74: 235–236.

    Article  Google Scholar 

  • Junk, W. J., C. N. Da Cunha, K. M. Wantzen, P. Petermann, C. Strüssmann, M. I. Marques & J. Adis, 2006. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquatic Sciences 68: 278–309.

    Article  Google Scholar 

  • Junk, W. J., M. T. F. Piedade, R. Lourival, F. Wittmann, P. Kandus, L. D. Lacerda, R. L. Bozelli, F. A. Esteves, L. Maltchik, J. Schöngart, Y. Schaeffer-Novelli & -A. A. Agostinho, 2014. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquatic Conservation 24: 5–22.

    Article  Google Scholar 

  • Koroleff, K. J. H., 1976. Determination of ammonia. In Grasshoff, E. & E. Kremling (eds.), Methods of Seawater Analysis. Verlag Chemie, Weinheim, New York.

    Google Scholar 

  • Kristiansen, J., 1996. Dispersal of freshwater algae - a review. Hydrobiologia 336: 151–157.

    Article  Google Scholar 

  • Kruk, C., A. M. Segura, L. S. Costa, G. Lacerot, S. Kosten, E. T. H. M. Peeters, V. L. M. Huszar, N. Mazzeo, & M. Scheffer, 2016. Functional redundancy increases towards the tropics in lake phytoplankton. Journal of Plankton Research. doi:10.1093/plankt/fbw083.

  • Langenheder, S., M. Berga, Ö. Östman & A. J. Székely, 2012. Temporal variation of β-diversity and assembly mechanisms in a bacterial metacommunity. The ISME Journal 6: 1107–1114.

    Article  CAS  PubMed  Google Scholar 

  • Lansac-Tôha, F. M., B. R. Meira, B. T. Segovia, F. A. Lansac-Tôha & L. F. M. Velho, 2016. Hydrological connectivity determining metacommunity structure of planktonic heterotrophic flagellates. Hydrobiologia 781: 81–94.

    Article  Google Scholar 

  • Latrubesse, E. M. & J. C. Stevaux, 2002. Geomorphology and environmental aspects of the Araguaia fluvial basin, Brasil. Zeitschrift fur Geomorphologie 129: 109–127.

    Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, New York.

    Google Scholar 

  • Leibold, M. A., 1996. A graphical model of keystone predators in food webs: trophic regulation of abundance, incidence, and diversity patterns in communities. American Naturalist 147: 784–812.

    Article  Google Scholar 

  • Leibold, M. A., 2011. The metacommunity concept and its theoretical underpinnings In Scheiner, S. M. & M. R. Willig (ed.), The Theory of Ecology. University Chicago Press, London: 163–183.

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 980–985.

    Article  Google Scholar 

  • Martiny, J. B. H., B. J. M. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, J. L. Green, M. C. Horner-Devine, M. Kane, J. A. Krumins, C. R. Kuske, P. J. Morin, S. Naeem, L. Ovreås, A.-L. Reysenbach, V. H. Smith, & J. T. Staley, 2006. Microbial biogeography: putting microorganisms on the map. Nature reviews. Microbiology 4: 102–112.

  • Martiny, J. B. H., J. A. Eisen, K. Penn, S. D. Allison & M. C. Horner-Devine, 2011. Drivers of bacterial β-diversity depend on spatial scale. Proceedings of the National Academy of Sciences of the United States of America 108: 7850–7854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihaljevic, J. R., 2012. Linking metacommunity theory and symbiont evolutionary ecology. Trends in Ecology and Evolution Elsevier Ltd 27: 323–329.

    Article  Google Scholar 

  • Mittelbach, G. G., D. W. Schemske, H. V. Cornell, A. P. Allen, J. M. Brown, M. B. Bush, S. P. Harrison, A. H. Hurlbert, N. Knowlton, H. A. Lessios, C. M. McCain, A. R. McCune, L. A. McDade, M. A. McPeek, T. J. Near, T. D. Price, R. E. Ricklefs, K. Roy, D. F. Sax, D. Schluter, J. M. Sobel & M. Turelli, 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters 10: 315–331.

    Article  PubMed  Google Scholar 

  • Nabout, J. C., I. D. S. Nogueira & L. G. Oliveira, 2009a. Estrutura de populações de fitoflagelados nas lagoas de inundação do rio Araguaia, Brasil. Acta Botanica Brasilica 23: 67–72.

    Article  Google Scholar 

  • Nabout, J. C., T. Siqueira, L. M. Bini & Ide S Nogueira, 2009b. No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecologica 35: 720–726.

    Article  Google Scholar 

  • Naselli-Flores, L. & J. Padisák, 2016. Blowing in the wind: how many roads can a phytoplanktont walk down? A synthesis on phytoplankton biogeography and spatial processes. Hydrobiologia 764: 303–313.

    Article  Google Scholar 

  • Neiff, J. J., 1990. Ideas Para La Interpretación Ecológica Del Paraná. Interciencia 15: 424–441.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt et al., 2015. Vegan: commity ecology package. R package version 2.3-0. http://CRAN.Rproject.org/package=vegan.

  • Padial, A. A., F. Ceschin, S. A. J. Declerck, L. De Meester, C. C. Bonecker, F. A. Lansac-Tôha, L. Rodrigues, L. C. Rodrigues, S. Train, L. F. M. Velho & L. M. Bini, 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PloS One 9: 1–8.

    Article  Google Scholar 

  • Padisák, J., 1992. Seasonal succession of phytoplankton in a large shallow lake (Balaton, Hungary)—a dynamic approach to ecological memory, its possible role and mechanisms. Journal of Ecology 80: 217–230.

    Article  Google Scholar 

  • Padisák, J., G. Vasas, & G. Borics, 2016. Phycogeography of freshwater phytoplankton: traditional knowledge and new molecular tools. Hydrobiologia 764:3–27.

    Article  Google Scholar 

  • Padisák, J., É. Hajnal, L. Krienitz, J. Lakner & V. Uveges, 2010. Rarity, ecological memory, rate of floral change in phytoplankton-and the mystery of the Red Cock. Hydrobiologia 653: 45–64.

    Article  Google Scholar 

  • Pearson, K., 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2: 559–572.

    Article  Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Ptacnik, R., T. Andersen, P. Brettum, L. Lepistö & E. Willén, 2010. Regional species pools control community saturation in lake phytoplankton. Proceedings. Biological sciences/The Royal Society 277: 3755–3764.

    Article  Google Scholar 

  • R Development Core Team, 2016. R: a language and environment for statistical computing.R Foundation for Statistical Computing. Viena, Austria, R-project.org/.

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Ecology. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Ricklefs, R. E., 1987. Community diversity: relative roles of and regional processes. Science 235: 167–171.

    Article  CAS  PubMed  Google Scholar 

  • Roberto, M. C., N. N. F. Santana & S. M. Thomaz, 2009. Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Brazilian Journal of Biology 69: 717–725.

    Article  CAS  Google Scholar 

  • Rocha, M. P., J. Heino, L. F., Machado-Velho, F. M. Lansac-Tôha, & F. A. Lansac-Tôha, 2017. Fine spatial grain, large spatial extent and biogeography of macrophyte-associated cladoceran communities across Neotropical floodplains. Freshwater Biology 62: 559–569.

  • Rodrigues, L., S. Train, V. M. Bovo-Scomparin, S. Jati, C. Borsalli & E. Marengoni, 2009. Interannual variability of phytoplankton in the main rivers of the Upper Paraná River floodplain, Brazil: influence of upstream reservoirs. Brazilian Journal of Biology 69: 501–516.

    Article  CAS  Google Scholar 

  • Rodrigues, L. C., N. R. Simões, V. M. Bovo-scomparin, S. Jati, N. F. Santana, M. C. Roberto & S. Train, 2015. Phytoplankton alpha diversity as an indicator of environmental changes in a neotropical floodplain. Ecological Indicators 48: 334–341.

    Article  CAS  Google Scholar 

  • Santos, J. B. O., L. H. S. Silva, C. W. C. Branco & V. L. M. Huszar, 2016. The roles of environmental conditions and geographical distances on the species turnover of the whole phytoplankton and zooplankton communities and their subsets in tropical reservoirs. Hydrobiologia 764: 171–186.

    Article  Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Springer US, New York.

    Google Scholar 

  • Segovia, B. T., F. M. Lansac-Toha, B. R. de Meira, A. F. Cabral, F. A. Lansac-Tôha & L. F. M. Velho, 2016. Anthropogenic disturbances influencing ciliate functional feeding groups in impacted tropical streams. Environmental Science and Pollution Research  23: 20003–20016.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, N. K., S. Singh & A. K. Rai, 2006. Diversity and seasonal variation of viable algal particles in the atmosphere of a subtropical city in India. Environmental Research 102: 252–259.

    Article  CAS  PubMed  Google Scholar 

  • Simões, N. R., J. D. Dias, C. M. Leal, S. M. L. Braghin, F. A. Lansac-Tôha & C. C. Bonecker, 2013. Floods control the influence of environmental gradients on the diversity of zooplankton communities in a neotropical floodplain. Aquatic Sciences 75: 607–617.

    Article  Google Scholar 

  • Soininen, J., J. J. Korhonen, J. Karhu & A. Vetterli, 2011. Disentangling the spatial patterns in community composition of prokaryotic and eukaryotic lake plankton. Limnology and Oceanography 56: 508–520.

    Article  Google Scholar 

  • Soininen, J., J. J. Korhonen & M. Luoto, 2013. Stochastic species distributions are driven by organism size. Ecology 94: 660–670.

    Article  PubMed  Google Scholar 

  • Sommer, U., 1993. Phytoplankton competition in Plußsee: a field test of the resource-ratio hypothesis. Limnology and Oceanography 38: 838–845.

    Article  CAS  Google Scholar 

  • Souffreau, C., K. Van der Gucht, I. van Gremberghe, S. Kosten, G. Lacerot, L. M. Lobão, V. L. de Moraes Huszar, F. Roland, E. Jeppesen, W. Vyverman & L. De Meester, 2015. Environmental rather than spatial factors structure bacterioplankton communities in shallow lakes along a > 6000 km latitudinal gradient in South America. Environmental Microbiology 17: 2336–2351.

    Article  PubMed  Google Scholar 

  • Souza Filho, E., 2009. Evaluation of the Upper Paraná River discharge controlled by reservoirs. Brazilian Journal of Biology 69: 707–716.

    Article  CAS  Google Scholar 

  • Stendera, S. E. S. & R. K. Johnson, 2005. Additive partitioning of aquatic invertebrate species diversity across multiple spatial scales. Freshwater Biology 50: 1360–1375.

    Article  Google Scholar 

  • Stomp, M., J. Huisman, L. Vörös, F. R. Pick, M. Laamanen, T. Haverkamp & L. J. Stal, 2007. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecology Letters 10: 290–298.

    Article  PubMed  Google Scholar 

  • Stomp, M., J. Huisman, G. G. Mittelbach, E. Litchman & C. A. Klausmeier, 2011. Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 92: 2096–2107.

    Article  PubMed  Google Scholar 

  • Tell, G., I. Izaguirre & L. Allende, 2011. Diversity and geographic distribution of Chlorococcales (Chlorophyceae) in contrasting lakes along a latitudinal transect in Argentinean Patagonia. Biodiversity and Conservation 20: 703–727.

    Article  Google Scholar 

  • Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  • Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology and Systematics 13: 349–372.

    Article  Google Scholar 

  • Tockner, K., D. Pennetzdorfer, N. Reiner, F. Schiemer & J. V. Ward, 1999. Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river ± floodplain system (Danube, Austria). Freshwater Biology 41: 521–535.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen phytoplankton-methodic. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Van der Gucht, K., K. Cottenie, K. Muylaert, N. Vloemans, S. Cousin, S. Declerck, E. Jeppesen, J.-M. Conde-Porcuna, K. Schwenk, G. Zwart, H. Degans, W. Vyverman & L. De Meester, 2007. The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proceedings of the National Academy of Sciences of the United States of America 104: 20404–20409.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanormelingen, P., K. Cottenie, E. Michels, K. Muylaert, W. Vyverman & L. De Meester, 2008. The relative importance of dispersal and local processes in structuring phytoplankton communities in a set of highly interconnected ponds. Freshwater Biology 53: 2170–2183.

    Google Scholar 

  • Veech, J. A., K. S. Summerville, T. O. Crist & J. C. Gering, 2002. The additive partitioning of species diversity: recent revival of an old idea. Oikos 99: 3–9.

    Article  Google Scholar 

  • Vieira, L. C. G., A. A. Padial, L. F. M. Velho, P. Carvalho & L. M. Bini, 2015. Concordance among zooplankton groups in a near-pristine floodplain system. Ecological Indicators 58: 374–381.

    Article  Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1995. The serial discontinuity concept—Extending the model to floodplain rivers. Regulated Rivers-Research & Management 10: 159–168.

    Article  Google Scholar 

  • Ward, J. V. & K. Tockner, 2001. Biodiversity: towards a unifying theme for river ecology. Freshwater Biology 46: 807–819.

    Article  Google Scholar 

  • Wetzel, C. E., D. C. de Bicudo, L. Ector, E. A. Lobo, J. Soininen, V. L. Landeiro & L. M. Bini, 2012. Distance decay of similarity in neotropical diatom communities. PLoS ONE 7: 1–8.

    Article  Google Scholar 

  • Weyhenmeyer, G. A., H. Peter & E. Willén, 2013. Shifts in phytoplankton species richness and biomass along a latitudinal gradient— consequences for relationships between biodiversity and ecosystem functioning. Freshwater Biology 58: 612–623.

    Article  Google Scholar 

  • Whittaker, R. H., 1960. Vegetation of the Siskiyou mountains, Oregon and California. America 30: 279–338.

    Google Scholar 

  • Willig, M., D. Kaufman & R. Stevens, 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics 34: 273–309.

    Article  Google Scholar 

  • Winegardner, A. K., B. K. Jones, I. S. Y. Ng, T. Siqueira & K. Cottenie, 2012. The terminology of metacommunity ecology. Trends in Ecology and Evolution Elsevier Ltd 27: 253–254.

    Article  Google Scholar 

  • Winemiller, K. O., P. B. McIntyre, L. Castello, E. Fluet-Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, I. Harrison, M. L. J. Stiassny, R. A. M. Silvano, D. B. Fitzgerald, F. M. Pelicice, A. A. Agostinho, L. C. Gomes, J. S. Albert, E. Baran, M. Petrere, C. Zarfl, M. Mulligan, J. P. Sullivan, C. C. Arantes, L. M. Sousa, A. A. Koning, D. J. Hoeinghaus, M. Sabaj, J. G. Lundberg, J. Armbruster, M. L. Thieme, P. Petry, J. Zuanon, G. T. Vilara, J. Snoeks, C. Ou, W. Rainboth, C. S. Pavanelli, A. Akama, A. van Soesbergen & L. Saenz, 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351: 128–129.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, K. C., M. G. M. Soares & C Ede C Freitas, 2004. Alimentação de Triportheus angulatus (Spix & Agassiz, 1829) no lago Camaleão, Manaus, AM, Brasil. Acta Amazonica 34: 653–659.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Nucleus of Research in Limnology, Ichthyology and Aquaculture (NUPELIA) and the National Program for Research in Biodiversity (Sisbiota Brazil) for logistical and financial support. We would like to thank the NUPELIA group for gently giving us the limnological, zooplankton, and ciliate database. The Brazilian Research Council (CNPq) and the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES) provided doctoral and post-doctoral scholarships. We also thank the anonymous reviewers for insightful comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geovani Arnhold Moresco.

Additional information

Handling editor: Judit Padisák

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moresco, G.A., Bortolini, J.C., Dias, J.D. et al. Drivers of phytoplankton richness and diversity components in Neotropical floodplain lakes, from small to large spatial scales. Hydrobiologia 799, 203–215 (2017). https://doi.org/10.1007/s10750-017-3214-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3214-3

Keywords

Navigation