Plants in aquatic ecosystems: current trends and future directions

Abstract

Aquatic plants fulfil a wide range of ecological roles, and make a substantial contribution to the structure, function and service provision of aquatic ecosystems. Given their well-documented importance in aquatic ecosystems, research into aquatic plants continues to blossom. The 14th International Symposium on Aquatic Plants, held in Edinburgh in September 2015, brought together 120 delegates from 28 countries and six continents. This special issue of Hydrobiologia includes a select number of papers on aspects of aquatic plants, covering a wide range of species, systems and issues. In this paper, we present an overview of current trends and future directions in aquatic plant research in the early twenty first century. Our understanding of aquatic plant biology, the range of scientific issues being addressed and the range of techniques available to researchers have all arguably never been greater; however, substantial challenges exist to the conservation and management of both aquatic plants and the ecosystems in which they are found. The range of countries and continents represented by conference delegates and authors of papers in the special issue illustrates the global relevance of aquatic plant research in the early twenty first century but also the many challenges that this burgeoning scientific discipline must address.

This is a preview of subscription content, access via your institution.

References

  1. Aguiar, F. C., M. J. Martins, P. C. Silva & M. R. Fernandes, 2016. Riverscapes downstream of hydropower dams: Effects of altered flows and historical land-use change. Landscape and Urban Planning 153: 83–98.

    Article  Google Scholar 

  2. Alahuhta, J., S. Hellsten, M. Kuoppala & J. Riihimäki, 2017. Regional and local determinants of macrophyte community compositions in high-latitude lakes of Finland. Hydrobiologia. doi:10.1007/s10750-016-2843-2.

    Google Scholar 

  3. Atapaththu, K. S. S., A. Miyagi, K. Atsuzawa, Y. Kaneko, M. Kawai-Yamada & T. Asaeda, 2015. Effects of water turbulence on variations in cell ultrastructure and metabolism of amino acids in the submersed macrophyte, Elodea nuttallii (Planch.) H. St. John. Plant Biology 17: 997–1004.

    CAS  Article  PubMed  Google Scholar 

  4. Azevedo-Santos, V. M., M. P. Fearnside, C. S. Oliveira, A. A. Padial, F. M. Pelicice, D. P. Lima Jr., D. Simberloff, T. E. Lovejoy, A. L. B. Magalhães, M. L. Orsi, A. A. Agostinho, F. A. Esteves, P. S. Pompeu, W. F. Laurance, M. Petrere Jr., R. P. Mormul & J. R. S. Vitule, 2017. Removing the abyss between conservation science and policy decisions in Brazil. Biodiversity and Conservation. doi:10.1007/s10531-017-1316-x.

    Google Scholar 

  5. Baastrup-Spohr, L., K. Sand-Jensen, S. V. Nicolajsen & H. H. Brunn, 2015. From soaking wet to bone dry: predicting plant community composition along a steep hydrological gradient. Journal of Vegetation Science 26: 619–630.

    Article  Google Scholar 

  6. Baastrup-Spohr, L., C. L. Møller & K. Sand-Jensen, 2016. Water-level fluctuations affect sediment properties, carbon flux and growth of the isoetid Littorella uniflora in oligotrophic lakes. Freshwater Biology 61: 301–315.

    CAS  Article  Google Scholar 

  7. Bakker, E. S., K. A. Wood, J. F. Pagès, G. F. Veen, M. J. A. Christianen, L. Santamaría, B. A. Nolet & S. Hilt, 2016. Herbivory on freshwater and marine macrophytes: a review and perspective. Aquatic Botany 135: 18–36.

    Article  Google Scholar 

  8. Birk, S., W. Bonne, A. Borja, S. Brucet, A. Courrat, S. Poikane, A. Solimini, W. van de Bund, N. Zampoukas & D. Hering, 2012. Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicators 18: 31–41.

    Article  Google Scholar 

  9. Brix, H., 1997. Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology 35: 11–17.

    CAS  Article  Google Scholar 

  10. Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    Article  PubMed  Google Scholar 

  11. Caffrey, J. M., P. R. F. Barrett, K. J. Murphy & P. M. Wade (Guest Editors), 1996. Management and ecology of freshwater plants. Hydrobiologia 340: 1–354.

  12. Caffrey, J. M., P. R. F. Barrett, M. T. Ferreira, I. S. Moreira, K. J. Murphy & P. M. Wade (Guest Editors), 1999. Biology, ecology and management of aquatic plants. Hydrobiologia 415: 1–339.

  13. Caffrey, J. M., A. Dutartre, J. Haury, K. J. Murphy & P. M. Wade (Guest Editors), 2006. Macrophytes in aquatic ecosystems: From biology to management. Hydrobiologia 570: 1–263.

  14. Campbell, C. J., C. V. Johns & D. L. Nielsen, 2014. The value of plant functional groups in demonstrating and communicating vegetation responses to environmental flows. Freshwater Biology 59: 858–869.

    Article  Google Scholar 

  15. Chambers, P. A., P. Lacoul, K. J. Murphy & S. M. Thomaz, 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9–26.

    Article  Google Scholar 

  16. Combroux, I., G. Bornette, N. J. Willby & C. Amoros, 2001. Regenerative strategies of aquatic plants in disturbed habitats: the role of the propagule bank. Archiv für Hydrobiologie 152: 215–235.

    Google Scholar 

  17. Council of the European Communities, 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Communities L206: 7–50.

    Google Scholar 

  18. Coutris, C., G. Merlina, J. Silvestre, E. Pinelli & A. Elger, 2011. Can we predict community-wide effects of herbicides from toxicity tests on macrophyte species? Aquatic Toxicology 101: 49–56.

    CAS  Article  PubMed  Google Scholar 

  19. Cuda, J. P., R. Charudattan, M. J. Grodowitz, R. M. Newman, J. F. Shearer, M. L. Tamayo & B. Villegas, 2008. Recent advances in biological control of submersed aquatic weeds. Journal of Aquatic Plant Management 46: 15–32.

    Google Scholar 

  20. Den Hartog, C., 1975. Aquatic botany—Aims and scope of a new journal. Aquatic Botany 1: 1–2.

    Article  Google Scholar 

  21. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    Article  PubMed  Google Scholar 

  22. Ecke, F., S. Hellsten, J. Kohler, A. W. Lorenz, J. Raapysjarvi, S. Scheunig, J. Segersten & A. Baattrup-Pedersen, 2016. The response of hydrophyte growth forms and plant strategies to river restoration. Hydrobiologia 769: 41–54.

    Article  Google Scholar 

  23. Elser, J. J., W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandi, S. S. Kilham, E. McCauley, K. L. Schulz, E. H. Siemann & R. W. Sterner, 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature 408: 578–580.

    CAS  Article  PubMed  Google Scholar 

  24. Engelhardt, K. A. M. & M. E. Ritchie, 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411: 687–689.

    CAS  Article  PubMed  Google Scholar 

  25. European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L327: 1–72.

  26. Fernández-Aláez, C., M. Fernández-Aláez, F. García-Criado & J. García-Girón, 2017. Environmental drivers of aquatic macrophyte assemblages in ponds along an altitudinal gradient. Hydrobiologia. doi:10.1007/s10750-016-2832-5.

    Google Scholar 

  27. Ferreira, T., M. T. O’Hare, K. Szoszkiewicz & S. Hellsten (Guest Editors), 2014. Plants in hydrosystems: From functional ecology to weed research. Hydrobiologia 737: 1–345.

  28. Gérard, J. & L. Triest, 2017. Competition between invasive Lemna minuta and native L. minor in indoor and field experiments. Hydrobiologia. doi:10.1007/s10750-016-2754-2.

    Google Scholar 

  29. Gurnell, A., 2014. Plants as river system engineers. Earth Surface Processes and Landforms 39: 4–25.

    Article  Google Scholar 

  30. Gurnell, A. M., D. Corenblit, D. García de Jalón, M. González del Tánago, R. C. Grabowski, M. T. O’Hare & M. Szewczyk, 2016. A conceptual model of vegetation-hydrogeomorphology interactions within river corridors. River Research and Applications 39: 142–163.

    Article  Google Scholar 

  31. Guittonny-Philippe, A., M. E. Petit, V. Masotti, Y. Monnier, L. Malleret, B. Coulomb, I. Combroux, T. Baumberger, J. Viglione & I. Laffont-Schwob, 2015. Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures. Journal of Environmental Management 147: 108–123.

    CAS  Article  PubMed  Google Scholar 

  32. Havel, J. E., K. E. Kovalenko, S. M. Thomaz, S. Amalfitano & L. B. Kats, 2015. Aquatic invasive species: challenges for the future. Hydrobiologia 750: 147–170.

    Article  Google Scholar 

  33. Hering, D., A. Borja, J. Carstensen, L. Carvalho, M. Elliott, C. K. Feld, A.-S. Heiskanen, R. K. Johnson, J. Moe, D. Pont, A. L. Solheim & W. van de Bund, 2010. The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Science of the Total Environment 408: 4007–4019.

    CAS  Article  PubMed  Google Scholar 

  34. Hidding, B., E. S. Bakker, M. J. M. Hootsmans & S. Hilt, 2016. Synergy between shading and herbivory triggers macrophyte loss and regime shifts in aquatic systems. Oikos 125: 1489–1495.

    Article  Google Scholar 

  35. Hussner, A., T. Mettler-Altmann, A. P. M. Weber & K. Sand-Jensen, 2016. Acclimation of photosynthesis to supersaturated CO2 in aquatic plant bicarbonate users. Freshwater Biology 61: 1720–1732.

    CAS  Article  Google Scholar 

  36. Hussner, A., I. Stiers, M. J. J. M. Verhofstad, E. S. Bakker, B. M. C. Grutters, J. Haury, J. L. C. H. van Valkenburg, G. Brundu, J. Newman, J. S. Clayton, L. W. J. Anderson & D. Hofstra, 2017. Management and control methods of invasive alien freshwater aquatic plants: A review. Aquatic Botany 136: 112–137.

    Article  Google Scholar 

  37. Kennedy, M. P., P. Lang, J. T. Grimaldo, S. V. Martins, A. Bruce, S. Lowe, H. Dallas, T. A. Davidson, H. Sichingabula, J. Briggs & K. J. Murphy, 2016. The Zambian Macrophyte Trophic Ranking scheme, ZMTR: A new biomonitoring protocol to assess the trophic status of tropical southern African rivers. Aquatic Botany 131: 15–27.

    Article  Google Scholar 

  38. Keruzore, A. A., N. J. Willby & D. J. Gilvear, 2013. The role of lateral connectivity in the maintenance of macrophyte diversity and production in large rivers. Aquatic Conservation: Marine and Freshwater Ecosystems 23: 301–315.

    Article  Google Scholar 

  39. King, R. S., R. A. Brain, J. A. Back, C. Becker, M. V. Wright, V. T. Djomte, W. C. Scott, S. R. Virgil, B. W. Brooks, A. J. Hosmer & C. K. Chambliss, 2016. Effects of pulsed atrazine exposures on autotrophic community structure, biomass, and production in field-based stream mesocosms. Environmental Toxicology and Chemistry 35: 660–675.

    CAS  Article  PubMed  Google Scholar 

  40. Klančnik, K., I. Iskra, D. Gradinjan & A. Gaberščik, 2017. The quality and quantity of light in the water column are altered by the optical properties of natant plant species. Hydrobiologia. doi:10.1007/s10750-017-3148-9.

    Google Scholar 

  41. Kolada, A., 2016. The use of helophytes in assessing eutrophication of temperate lowland lakes: Added value? Aquatic Botany 129: 44–54.

    Article  Google Scholar 

  42. Kristensen, P., 2012. European Waters: Assessment of Status and Pressures. Publications Office of the European Union, Luxembourg.

    Google Scholar 

  43. Krugmann, P., 2012. End this Depression Now!. W. W. Norton & Company, London.

    Google Scholar 

  44. Lodge, D. M., 1991. Herbivory on freshwater macrophytes. Aquatic Botany 41: 195–224.

    Article  Google Scholar 

  45. Lozano, V. & G. Brundu, 2017. Prioritisation of aquatic invasive alien plants in South America with the US Aquatic Weed Risk Assessment. Hydrobiologia. doi:10.1007/s10750-016-2858-8.

    Google Scholar 

  46. Marjoribanks, T. I., R. J. Hardy, S. N. Lane & D. R. Parsons, 2014. Dynamic drag modeling of submerged aquatic vegetation canopy flows. River Flow 2014: 517–524.

    Google Scholar 

  47. Martins, S. V., J. Milne, S. M. Thomaz, S. McWaters, R. P. Mormul, M. Kennedy & K. Murphy, 2013. Human and natural drivers of changing macrophyte community dynamics over 12 years in a Neotropical riverine floodplain system. Aquatic Conservation: Marine and Freshwater Ecosystems 23: 678–697.

    Google Scholar 

  48. May, L. & B. M. Spears, 2012. Managing ecosystem services at Loch Leven, Scotland, UK: Actions, impacts and unintended consequences. Hydrobiologia 681: 117–130.

    Article  Google Scholar 

  49. McKinley, D. C., A. J. Miller-Rushing, H. L. Ballard, R. Bonney, H. Brown, S. C. Cook-Patton, D. M. Evans, R. A. French, J. K. Parrish, T. B. Phillips, S. F. Ryan, L. A. Shanley, J. L. Shirk, K. F. Stepenuck, J. F. Weltzin, A. Wiggins, O. D. Boyle, R. D. Briggs, S. F. Chapin, D. A. Hewitt, P. W. Preuss & M. A. Soukup, 2017. Citizen science can improve conservation science, natural resource management, and environmental protection. Biological Conservation 208: 15–28.

    Article  Google Scholar 

  50. Nunes, L. S. C. & A. F. M. Camargo, 2017. Do interspecific competition and salinity explain plant zonation in a tropical estuary? Hydrobiologia. doi:10.1007/s10750-016-2821-8.

    Google Scholar 

  51. O’Hare, M. T., 2015. Aquatic vegetation—a primer for hydrodynamic specialists. Journal of Hydraulic Research 53: 687–698.

    Article  Google Scholar 

  52. O’Hare, M. T., I. D. M. Gunn, D. S. Chapman, B. J. Dudley & B. V. Purse, 2012. Impacts of space, local environment and habitat connectivity on macrophyte communities in conservation lakes. Diversity and Distributions 18: 603–614.

    Article  Google Scholar 

  53. Phillips, G., N. Willby & B. Moss, 2016. Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? Aquatic Botany 135: 37–45.

    Article  Google Scholar 

  54. Pieterse, A., S. Hellsten, J. Newman, J. Caffrey, F. Ecke, T. Ferreira, B. Gopal, J. Haury, G. Janauer, T. Kairesalo, A. Kanninen, K. Karttunen, J. Sarvala, K. Szoszkiewicz, H. Toivonen, L. Triest, P. Uotila & N. Willby (Guest Editors), 2010. Aquatic Invasions and Relation to Environmental Changes: Proceedings of the 12th International Symposium on Aquatic Weeds, European Weed Research Society. Hydrobiologia 656: 1–267.

  55. Puijalon, S., T. J. Bouma, C. J. Douady, J. van Groenendael, N. P. R. Anten, E. Martel & G. Bornette, 2011. Plant resistance to mechanical stress: evidence of an avoidance-tolerance trade-off. New Phytologist 191: 1141–1149.

    CAS  Article  PubMed  Google Scholar 

  56. R Core Development Team, 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  57. Redekop, P., E. M. Gross, A. Nuttens, D. E. Hofstra, J. S. Clayton & A. Hussner, 2017. Hygraula nitens the only native aquatic caterpillar in New Zealand, prefers feeding on an alien submerged plant. Hydrobiologia. doi:10.1007/s10750-016-2709-7.

    Google Scholar 

  58. Ribaudo, C., V. Bertrin, G. Jan, P. Anschutz & G. Abril, 2017. Benthic production, respiration and methane oxidation in Lobelia dortmanna lawns. Hydrobiologia 784: 21–34.

    CAS  Article  Google Scholar 

  59. Rivaes, R., P. M. Rodriguez-Gonzalez, A. Albuquerque, A. N. Pinheiro, G. Egger & M. T. Ferreira, 2015. Reducing river regulation effects on riparian vegetation using flushing flow regimes. Ecological Engineering 81: 428–438.

    Article  Google Scholar 

  60. Robe, W. E. & H. Griffith, 2000. Physiological and photosynthetic plasticity in the amphibious plant, Littorella uniflora, during the transition from aquatic to dry environments. Plant Cell and Environment 23: 1041–1054.

    Article  Google Scholar 

  61. Schoelynck, J. & E. Struyf, 2016. Silicon in aquatic vegetation. Functional Ecology 30: 1323–1330.

    Article  Google Scholar 

  62. Schoelynck, J., K. Bal, V. Verschoren, E. Penning, E. Struyf, T. Bouma, D. Meire, P. Meire & S. Temmerman, 2014. Different morphology of Nuphar lutea in two contrasting aquatic environments and its effect on ecosystem engineering. Earth Surface Processes and Landforms 39: 2100–2108.

    Article  Google Scholar 

  63. Shelford, V. E., 1918. Conditions of existence. In Ward, H. B. & G. C. Whipple (eds.), Freshwater Biology. Wiley, New York: 21–60.

    Google Scholar 

  64. Short, F. T., S. Kosten, P. A. Morgan, S. Malone & G. E. Moore, 2016. Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany 135: 3–17.

    Article  Google Scholar 

  65. Smith, B. D., P. S. Maitland & S. M. Pennock, 1987. A comparative study of water level regimes and littoral benthic communities in Scottish lochs. Biological Conservation 39: 291–316.

    Article  Google Scholar 

  66. Souter, N. J., T. Wallace, M. Walter & R. Watts, 2014. Raising river level to improve the condition of a semi-arid floodplain forest. Ecohydrology 7: 334–344.

    Article  Google Scholar 

  67. Spears, B. M., E. B. Mackay, S. Yasseri, I. D. M. Gunn, K. E. Waters, C. Andrews, S. Cole, M. De Ville, A. Kelly, S. Meis, A. L. Moore, G. K. Nürnberg, F. van Oosterhout, J.-A. Pitt, G. Madgwick, H. J. Woods & M. Lürling, 2016. A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (Phoslock®). Water Research 97: 111–121.

    CAS  Article  PubMed  Google Scholar 

  68. Stillman, R. A., K. A. Wood, W. Gilkerson, E. Elkinton, J. M. Black, D. H. Ward & M. Petrie, 2015. Predicting effects of environmental change on a migratory herbivore. Ecosphere 6: 114.

    Article  Google Scholar 

  69. Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  70. Vermaat, J. A. & E. M. Gross, 2016. Aquatic botany since 1975: Have our views changed? Aquatic Botany 135: 1–2.

    Article  Google Scholar 

  71. Verschoren, V., D. Meire, J. Schoelynck, K. Buis, K. D. Bal, P. Troch, P. Meire & S. Temmerman, 2016. Resistance and reconfiguration of natural flexible submerged vegetation in hydrodynamic river modelling. Environmental Fluid Mechanics 16: 245–265.

    CAS  Article  Google Scholar 

  72. Visser, F., K. Buis, V. Verschoren & P. Meire, 2015. Depth estimation of submerged aquatic vegetation in clear water streams using low-altitude optical remote sensing. Sensors 15: 25287–25312.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Volkmann, C., S. Halbedel, M. Voss & H. Schubert, 2016. The role of dissolved organic and inorganic nitrogen for growth of macrophytes in coastal waters of the Baltic Sea. Journal of Experimental Marine Biology and Ecology 477: 23–30.

    CAS  Article  Google Scholar 

  74. Vollenweider, R. A., 1968. Water management research. Scientific fundamentals of the eutrophication of lakes and flowing waters with particular reference to nitrogen and phosphorus as factors in eutrophication. Organization for Economic Co-operation and Development, Directorate for Scientific Affairs, Paris.

  75. Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermann & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.

    Article  PubMed  Google Scholar 

  76. Wood, K. A., R. A. Stillman, F. Daunt & M. T. O’Hare, 2014. Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioural ecology to inform wildlife management. PLoS One 9: e104034.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wood, K. A., M. T. O’Hare, C. McDonald, K. R. Searle, F. Daunt & R. A. Stillman, 2017a. Herbivore regulation of plant abundance in aquatic ecosystems. Biological Reviews. doi:10.1111/brv.12272.

    Google Scholar 

  78. Wood, K. A., R. A. Stillman, R. T. Clarke, F. Daunt & M. T. O’Hare, 2017b. Water velocity limits the temporal extent of herbivore effects on aquatic plants in a lowland river. Hydrobiologia. doi:10.1007/s10750-016-2744-4.

    Google Scholar 

  79. Zhang, P., B. A. Blonk, R. F. van den Berg & E. S. Bakker, 2017. The effect of temperature on herbivory by the omnivorous ectotherm snail Lymnaea stagnalis. Hydrobiologia. doi:10.1007/s10750-016-2891-7.

    Google Scholar 

Download references

Acknowledgements

We are grateful to André Padial, Baz Hughes and two anonymous reviewers for their helpful comments on earlier drafts of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iain D. M. Gunn.

Additional information

Guest editors: M. T. O’Hare, F. C. Aguiar, E. S. Bakker & K. A. Wood / Plants in Aquatic Systems – a 21st Century Perspective

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

O’Hare, M.T., Aguiar, F.C., Asaeda, T. et al. Plants in aquatic ecosystems: current trends and future directions. Hydrobiologia 812, 1–11 (2018). https://doi.org/10.1007/s10750-017-3190-7

Download citation

Keywords

  • Angiosperms
  • Botany
  • Herbivory
  • Limnology
  • Macrophytes
  • Submerged aquatic vegetation
  • Trends in research