, Volume 812, Issue 1, pp 1–11 | Cite as

Plants in aquatic ecosystems: current trends and future directions

  • Matthew T. O’Hare
  • Francisca C. Aguiar
  • Takashi Asaeda
  • Elisabeth S. Bakker
  • Patricia A. Chambers
  • John S. Clayton
  • Arnaud Elger
  • Teresa M. Ferreira
  • Elisabeth M. Gross
  • Iain D. M. GunnEmail author
  • Angela M. Gurnell
  • Seppo Hellsten
  • Deborah E. Hofstra
  • Wei Li
  • Silvia Mohr
  • Sara Puijalon
  • Krzysztof Szoszkiewicz
  • Nigel J. Willby
  • Kevin A. Wood


Aquatic plants fulfil a wide range of ecological roles, and make a substantial contribution to the structure, function and service provision of aquatic ecosystems. Given their well-documented importance in aquatic ecosystems, research into aquatic plants continues to blossom. The 14th International Symposium on Aquatic Plants, held in Edinburgh in September 2015, brought together 120 delegates from 28 countries and six continents. This special issue of Hydrobiologia includes a select number of papers on aspects of aquatic plants, covering a wide range of species, systems and issues. In this paper, we present an overview of current trends and future directions in aquatic plant research in the early twenty first century. Our understanding of aquatic plant biology, the range of scientific issues being addressed and the range of techniques available to researchers have all arguably never been greater; however, substantial challenges exist to the conservation and management of both aquatic plants and the ecosystems in which they are found. The range of countries and continents represented by conference delegates and authors of papers in the special issue illustrates the global relevance of aquatic plant research in the early twenty first century but also the many challenges that this burgeoning scientific discipline must address.


Angiosperms Botany Herbivory Limnology Macrophytes Submerged aquatic vegetation Trends in research 



We are grateful to André Padial, Baz Hughes and two anonymous reviewers for their helpful comments on earlier drafts of this manuscript.


  1. Aguiar, F. C., M. J. Martins, P. C. Silva & M. R. Fernandes, 2016. Riverscapes downstream of hydropower dams: Effects of altered flows and historical land-use change. Landscape and Urban Planning 153: 83–98.CrossRefGoogle Scholar
  2. Alahuhta, J., S. Hellsten, M. Kuoppala & J. Riihimäki, 2017. Regional and local determinants of macrophyte community compositions in high-latitude lakes of Finland. Hydrobiologia. doi: 10.1007/s10750-016-2843-2.Google Scholar
  3. Atapaththu, K. S. S., A. Miyagi, K. Atsuzawa, Y. Kaneko, M. Kawai-Yamada & T. Asaeda, 2015. Effects of water turbulence on variations in cell ultrastructure and metabolism of amino acids in the submersed macrophyte, Elodea nuttallii (Planch.) H. St. John. Plant Biology 17: 997–1004.CrossRefPubMedGoogle Scholar
  4. Azevedo-Santos, V. M., M. P. Fearnside, C. S. Oliveira, A. A. Padial, F. M. Pelicice, D. P. Lima Jr., D. Simberloff, T. E. Lovejoy, A. L. B. Magalhães, M. L. Orsi, A. A. Agostinho, F. A. Esteves, P. S. Pompeu, W. F. Laurance, M. Petrere Jr., R. P. Mormul & J. R. S. Vitule, 2017. Removing the abyss between conservation science and policy decisions in Brazil. Biodiversity and Conservation. doi: 10.1007/s10531-017-1316-x.Google Scholar
  5. Baastrup-Spohr, L., K. Sand-Jensen, S. V. Nicolajsen & H. H. Brunn, 2015. From soaking wet to bone dry: predicting plant community composition along a steep hydrological gradient. Journal of Vegetation Science 26: 619–630.CrossRefGoogle Scholar
  6. Baastrup-Spohr, L., C. L. Møller & K. Sand-Jensen, 2016. Water-level fluctuations affect sediment properties, carbon flux and growth of the isoetid Littorella uniflora in oligotrophic lakes. Freshwater Biology 61: 301–315.CrossRefGoogle Scholar
  7. Bakker, E. S., K. A. Wood, J. F. Pagès, G. F. Veen, M. J. A. Christianen, L. Santamaría, B. A. Nolet & S. Hilt, 2016. Herbivory on freshwater and marine macrophytes: a review and perspective. Aquatic Botany 135: 18–36.CrossRefGoogle Scholar
  8. Birk, S., W. Bonne, A. Borja, S. Brucet, A. Courrat, S. Poikane, A. Solimini, W. van de Bund, N. Zampoukas & D. Hering, 2012. Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicators 18: 31–41.CrossRefGoogle Scholar
  9. Brix, H., 1997. Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology 35: 11–17.CrossRefGoogle Scholar
  10. Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.CrossRefPubMedGoogle Scholar
  11. Caffrey, J. M., P. R. F. Barrett, K. J. Murphy & P. M. Wade (Guest Editors), 1996. Management and ecology of freshwater plants. Hydrobiologia 340: 1–354.Google Scholar
  12. Caffrey, J. M., P. R. F. Barrett, M. T. Ferreira, I. S. Moreira, K. J. Murphy & P. M. Wade (Guest Editors), 1999. Biology, ecology and management of aquatic plants. Hydrobiologia 415: 1–339.Google Scholar
  13. Caffrey, J. M., A. Dutartre, J. Haury, K. J. Murphy & P. M. Wade (Guest Editors), 2006. Macrophytes in aquatic ecosystems: From biology to management. Hydrobiologia 570: 1–263.Google Scholar
  14. Campbell, C. J., C. V. Johns & D. L. Nielsen, 2014. The value of plant functional groups in demonstrating and communicating vegetation responses to environmental flows. Freshwater Biology 59: 858–869.CrossRefGoogle Scholar
  15. Chambers, P. A., P. Lacoul, K. J. Murphy & S. M. Thomaz, 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9–26.CrossRefGoogle Scholar
  16. Combroux, I., G. Bornette, N. J. Willby & C. Amoros, 2001. Regenerative strategies of aquatic plants in disturbed habitats: the role of the propagule bank. Archiv für Hydrobiologie 152: 215–235.Google Scholar
  17. Council of the European Communities, 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Communities L206: 7–50.Google Scholar
  18. Coutris, C., G. Merlina, J. Silvestre, E. Pinelli & A. Elger, 2011. Can we predict community-wide effects of herbicides from toxicity tests on macrophyte species? Aquatic Toxicology 101: 49–56.CrossRefPubMedGoogle Scholar
  19. Cuda, J. P., R. Charudattan, M. J. Grodowitz, R. M. Newman, J. F. Shearer, M. L. Tamayo & B. Villegas, 2008. Recent advances in biological control of submersed aquatic weeds. Journal of Aquatic Plant Management 46: 15–32.Google Scholar
  20. Den Hartog, C., 1975. Aquatic botany—Aims and scope of a new journal. Aquatic Botany 1: 1–2.CrossRefGoogle Scholar
  21. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.CrossRefPubMedGoogle Scholar
  22. Ecke, F., S. Hellsten, J. Kohler, A. W. Lorenz, J. Raapysjarvi, S. Scheunig, J. Segersten & A. Baattrup-Pedersen, 2016. The response of hydrophyte growth forms and plant strategies to river restoration. Hydrobiologia 769: 41–54.CrossRefGoogle Scholar
  23. Elser, J. J., W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandi, S. S. Kilham, E. McCauley, K. L. Schulz, E. H. Siemann & R. W. Sterner, 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature 408: 578–580.CrossRefPubMedGoogle Scholar
  24. Engelhardt, K. A. M. & M. E. Ritchie, 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411: 687–689.CrossRefPubMedGoogle Scholar
  25. European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L327: 1–72.Google Scholar
  26. Fernández-Aláez, C., M. Fernández-Aláez, F. García-Criado & J. García-Girón, 2017. Environmental drivers of aquatic macrophyte assemblages in ponds along an altitudinal gradient. Hydrobiologia. doi: 10.1007/s10750-016-2832-5.Google Scholar
  27. Ferreira, T., M. T. O’Hare, K. Szoszkiewicz & S. Hellsten (Guest Editors), 2014. Plants in hydrosystems: From functional ecology to weed research. Hydrobiologia 737: 1–345.Google Scholar
  28. Gérard, J. & L. Triest, 2017. Competition between invasive Lemna minuta and native L. minor in indoor and field experiments. Hydrobiologia. doi: 10.1007/s10750-016-2754-2.Google Scholar
  29. Gurnell, A., 2014. Plants as river system engineers. Earth Surface Processes and Landforms 39: 4–25.CrossRefGoogle Scholar
  30. Gurnell, A. M., D. Corenblit, D. García de Jalón, M. González del Tánago, R. C. Grabowski, M. T. O’Hare & M. Szewczyk, 2016. A conceptual model of vegetation-hydrogeomorphology interactions within river corridors. River Research and Applications 39: 142–163.CrossRefGoogle Scholar
  31. Guittonny-Philippe, A., M. E. Petit, V. Masotti, Y. Monnier, L. Malleret, B. Coulomb, I. Combroux, T. Baumberger, J. Viglione & I. Laffont-Schwob, 2015. Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures. Journal of Environmental Management 147: 108–123.CrossRefPubMedGoogle Scholar
  32. Havel, J. E., K. E. Kovalenko, S. M. Thomaz, S. Amalfitano & L. B. Kats, 2015. Aquatic invasive species: challenges for the future. Hydrobiologia 750: 147–170.CrossRefGoogle Scholar
  33. Hering, D., A. Borja, J. Carstensen, L. Carvalho, M. Elliott, C. K. Feld, A.-S. Heiskanen, R. K. Johnson, J. Moe, D. Pont, A. L. Solheim & W. van de Bund, 2010. The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Science of the Total Environment 408: 4007–4019.CrossRefPubMedGoogle Scholar
  34. Hidding, B., E. S. Bakker, M. J. M. Hootsmans & S. Hilt, 2016. Synergy between shading and herbivory triggers macrophyte loss and regime shifts in aquatic systems. Oikos 125: 1489–1495.CrossRefGoogle Scholar
  35. Hussner, A., T. Mettler-Altmann, A. P. M. Weber & K. Sand-Jensen, 2016. Acclimation of photosynthesis to supersaturated CO2 in aquatic plant bicarbonate users. Freshwater Biology 61: 1720–1732.CrossRefGoogle Scholar
  36. Hussner, A., I. Stiers, M. J. J. M. Verhofstad, E. S. Bakker, B. M. C. Grutters, J. Haury, J. L. C. H. van Valkenburg, G. Brundu, J. Newman, J. S. Clayton, L. W. J. Anderson & D. Hofstra, 2017. Management and control methods of invasive alien freshwater aquatic plants: A review. Aquatic Botany 136: 112–137.CrossRefGoogle Scholar
  37. Kennedy, M. P., P. Lang, J. T. Grimaldo, S. V. Martins, A. Bruce, S. Lowe, H. Dallas, T. A. Davidson, H. Sichingabula, J. Briggs & K. J. Murphy, 2016. The Zambian Macrophyte Trophic Ranking scheme, ZMTR: A new biomonitoring protocol to assess the trophic status of tropical southern African rivers. Aquatic Botany 131: 15–27.CrossRefGoogle Scholar
  38. Keruzore, A. A., N. J. Willby & D. J. Gilvear, 2013. The role of lateral connectivity in the maintenance of macrophyte diversity and production in large rivers. Aquatic Conservation: Marine and Freshwater Ecosystems 23: 301–315.CrossRefGoogle Scholar
  39. King, R. S., R. A. Brain, J. A. Back, C. Becker, M. V. Wright, V. T. Djomte, W. C. Scott, S. R. Virgil, B. W. Brooks, A. J. Hosmer & C. K. Chambliss, 2016. Effects of pulsed atrazine exposures on autotrophic community structure, biomass, and production in field-based stream mesocosms. Environmental Toxicology and Chemistry 35: 660–675.CrossRefPubMedGoogle Scholar
  40. Klančnik, K., I. Iskra, D. Gradinjan & A. Gaberščik, 2017. The quality and quantity of light in the water column are altered by the optical properties of natant plant species. Hydrobiologia. doi: 10.1007/s10750-017-3148-9.Google Scholar
  41. Kolada, A., 2016. The use of helophytes in assessing eutrophication of temperate lowland lakes: Added value? Aquatic Botany 129: 44–54.CrossRefGoogle Scholar
  42. Kristensen, P., 2012. European Waters: Assessment of Status and Pressures. Publications Office of the European Union, Luxembourg.Google Scholar
  43. Krugmann, P., 2012. End this Depression Now!. W. W. Norton & Company, London.Google Scholar
  44. Lodge, D. M., 1991. Herbivory on freshwater macrophytes. Aquatic Botany 41: 195–224.CrossRefGoogle Scholar
  45. Lozano, V. & G. Brundu, 2017. Prioritisation of aquatic invasive alien plants in South America with the US Aquatic Weed Risk Assessment. Hydrobiologia. doi: 10.1007/s10750-016-2858-8.Google Scholar
  46. Marjoribanks, T. I., R. J. Hardy, S. N. Lane & D. R. Parsons, 2014. Dynamic drag modeling of submerged aquatic vegetation canopy flows. River Flow 2014: 517–524.Google Scholar
  47. Martins, S. V., J. Milne, S. M. Thomaz, S. McWaters, R. P. Mormul, M. Kennedy & K. Murphy, 2013. Human and natural drivers of changing macrophyte community dynamics over 12 years in a Neotropical riverine floodplain system. Aquatic Conservation: Marine and Freshwater Ecosystems 23: 678–697.Google Scholar
  48. May, L. & B. M. Spears, 2012. Managing ecosystem services at Loch Leven, Scotland, UK: Actions, impacts and unintended consequences. Hydrobiologia 681: 117–130.CrossRefGoogle Scholar
  49. McKinley, D. C., A. J. Miller-Rushing, H. L. Ballard, R. Bonney, H. Brown, S. C. Cook-Patton, D. M. Evans, R. A. French, J. K. Parrish, T. B. Phillips, S. F. Ryan, L. A. Shanley, J. L. Shirk, K. F. Stepenuck, J. F. Weltzin, A. Wiggins, O. D. Boyle, R. D. Briggs, S. F. Chapin, D. A. Hewitt, P. W. Preuss & M. A. Soukup, 2017. Citizen science can improve conservation science, natural resource management, and environmental protection. Biological Conservation 208: 15–28.CrossRefGoogle Scholar
  50. Nunes, L. S. C. & A. F. M. Camargo, 2017. Do interspecific competition and salinity explain plant zonation in a tropical estuary? Hydrobiologia. doi: 10.1007/s10750-016-2821-8.Google Scholar
  51. O’Hare, M. T., 2015. Aquatic vegetation—a primer for hydrodynamic specialists. Journal of Hydraulic Research 53: 687–698.CrossRefGoogle Scholar
  52. O’Hare, M. T., I. D. M. Gunn, D. S. Chapman, B. J. Dudley & B. V. Purse, 2012. Impacts of space, local environment and habitat connectivity on macrophyte communities in conservation lakes. Diversity and Distributions 18: 603–614.CrossRefGoogle Scholar
  53. Phillips, G., N. Willby & B. Moss, 2016. Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? Aquatic Botany 135: 37–45.CrossRefGoogle Scholar
  54. Pieterse, A., S. Hellsten, J. Newman, J. Caffrey, F. Ecke, T. Ferreira, B. Gopal, J. Haury, G. Janauer, T. Kairesalo, A. Kanninen, K. Karttunen, J. Sarvala, K. Szoszkiewicz, H. Toivonen, L. Triest, P. Uotila & N. Willby (Guest Editors), 2010. Aquatic Invasions and Relation to Environmental Changes: Proceedings of the 12th International Symposium on Aquatic Weeds, European Weed Research Society. Hydrobiologia 656: 1–267.Google Scholar
  55. Puijalon, S., T. J. Bouma, C. J. Douady, J. van Groenendael, N. P. R. Anten, E. Martel & G. Bornette, 2011. Plant resistance to mechanical stress: evidence of an avoidance-tolerance trade-off. New Phytologist 191: 1141–1149.CrossRefPubMedGoogle Scholar
  56. R Core Development Team, 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  57. Redekop, P., E. M. Gross, A. Nuttens, D. E. Hofstra, J. S. Clayton & A. Hussner, 2017. Hygraula nitens the only native aquatic caterpillar in New Zealand, prefers feeding on an alien submerged plant. Hydrobiologia. doi: 10.1007/s10750-016-2709-7.Google Scholar
  58. Ribaudo, C., V. Bertrin, G. Jan, P. Anschutz & G. Abril, 2017. Benthic production, respiration and methane oxidation in Lobelia dortmanna lawns. Hydrobiologia 784: 21–34.CrossRefGoogle Scholar
  59. Rivaes, R., P. M. Rodriguez-Gonzalez, A. Albuquerque, A. N. Pinheiro, G. Egger & M. T. Ferreira, 2015. Reducing river regulation effects on riparian vegetation using flushing flow regimes. Ecological Engineering 81: 428–438.CrossRefGoogle Scholar
  60. Robe, W. E. & H. Griffith, 2000. Physiological and photosynthetic plasticity in the amphibious plant, Littorella uniflora, during the transition from aquatic to dry environments. Plant Cell and Environment 23: 1041–1054.CrossRefGoogle Scholar
  61. Schoelynck, J. & E. Struyf, 2016. Silicon in aquatic vegetation. Functional Ecology 30: 1323–1330.CrossRefGoogle Scholar
  62. Schoelynck, J., K. Bal, V. Verschoren, E. Penning, E. Struyf, T. Bouma, D. Meire, P. Meire & S. Temmerman, 2014. Different morphology of Nuphar lutea in two contrasting aquatic environments and its effect on ecosystem engineering. Earth Surface Processes and Landforms 39: 2100–2108.CrossRefGoogle Scholar
  63. Shelford, V. E., 1918. Conditions of existence. In Ward, H. B. & G. C. Whipple (eds.), Freshwater Biology. Wiley, New York: 21–60.Google Scholar
  64. Short, F. T., S. Kosten, P. A. Morgan, S. Malone & G. E. Moore, 2016. Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany 135: 3–17.CrossRefGoogle Scholar
  65. Smith, B. D., P. S. Maitland & S. M. Pennock, 1987. A comparative study of water level regimes and littoral benthic communities in Scottish lochs. Biological Conservation 39: 291–316.CrossRefGoogle Scholar
  66. Souter, N. J., T. Wallace, M. Walter & R. Watts, 2014. Raising river level to improve the condition of a semi-arid floodplain forest. Ecohydrology 7: 334–344.CrossRefGoogle Scholar
  67. Spears, B. M., E. B. Mackay, S. Yasseri, I. D. M. Gunn, K. E. Waters, C. Andrews, S. Cole, M. De Ville, A. Kelly, S. Meis, A. L. Moore, G. K. Nürnberg, F. van Oosterhout, J.-A. Pitt, G. Madgwick, H. J. Woods & M. Lürling, 2016. A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (Phoslock®). Water Research 97: 111–121.CrossRefPubMedGoogle Scholar
  68. Stillman, R. A., K. A. Wood, W. Gilkerson, E. Elkinton, J. M. Black, D. H. Ward & M. Petrie, 2015. Predicting effects of environmental change on a migratory herbivore. Ecosphere 6: 114.CrossRefGoogle Scholar
  69. Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.CrossRefGoogle Scholar
  70. Vermaat, J. A. & E. M. Gross, 2016. Aquatic botany since 1975: Have our views changed? Aquatic Botany 135: 1–2.CrossRefGoogle Scholar
  71. Verschoren, V., D. Meire, J. Schoelynck, K. Buis, K. D. Bal, P. Troch, P. Meire & S. Temmerman, 2016. Resistance and reconfiguration of natural flexible submerged vegetation in hydrodynamic river modelling. Environmental Fluid Mechanics 16: 245–265.CrossRefGoogle Scholar
  72. Visser, F., K. Buis, V. Verschoren & P. Meire, 2015. Depth estimation of submerged aquatic vegetation in clear water streams using low-altitude optical remote sensing. Sensors 15: 25287–25312.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Volkmann, C., S. Halbedel, M. Voss & H. Schubert, 2016. The role of dissolved organic and inorganic nitrogen for growth of macrophytes in coastal waters of the Baltic Sea. Journal of Experimental Marine Biology and Ecology 477: 23–30.CrossRefGoogle Scholar
  74. Vollenweider, R. A., 1968. Water management research. Scientific fundamentals of the eutrophication of lakes and flowing waters with particular reference to nitrogen and phosphorus as factors in eutrophication. Organization for Economic Co-operation and Development, Directorate for Scientific Affairs, Paris.Google Scholar
  75. Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermann & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.CrossRefPubMedGoogle Scholar
  76. Wood, K. A., R. A. Stillman, F. Daunt & M. T. O’Hare, 2014. Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioural ecology to inform wildlife management. PLoS One 9: e104034.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wood, K. A., M. T. O’Hare, C. McDonald, K. R. Searle, F. Daunt & R. A. Stillman, 2017a. Herbivore regulation of plant abundance in aquatic ecosystems. Biological Reviews. doi: 10.1111/brv.12272.Google Scholar
  78. Wood, K. A., R. A. Stillman, R. T. Clarke, F. Daunt & M. T. O’Hare, 2017b. Water velocity limits the temporal extent of herbivore effects on aquatic plants in a lowland river. Hydrobiologia. doi: 10.1007/s10750-016-2744-4.Google Scholar
  79. Zhang, P., B. A. Blonk, R. F. van den Berg & E. S. Bakker, 2017. The effect of temperature on herbivory by the omnivorous ectotherm snail Lymnaea stagnalis. Hydrobiologia. doi: 10.1007/s10750-016-2891-7.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Matthew T. O’Hare
    • 1
  • Francisca C. Aguiar
    • 2
  • Takashi Asaeda
    • 3
  • Elisabeth S. Bakker
    • 4
  • Patricia A. Chambers
    • 5
  • John S. Clayton
    • 6
  • Arnaud Elger
    • 7
  • Teresa M. Ferreira
    • 2
  • Elisabeth M. Gross
    • 8
  • Iain D. M. Gunn
    • 1
    Email author
  • Angela M. Gurnell
    • 9
  • Seppo Hellsten
    • 10
  • Deborah E. Hofstra
    • 6
  • Wei Li
    • 11
  • Silvia Mohr
    • 12
  • Sara Puijalon
    • 13
  • Krzysztof Szoszkiewicz
    • 14
  • Nigel J. Willby
    • 15
  • Kevin A. Wood
    • 16
  1. 1.Centre for Ecology & HydrologyPenicuikScotland, UK
  2. 2.Forest Research Centre, School of AgronomyUniversity of LisbonLisbonPortugal
  3. 3.Department of Environmental ScienceSaitama UniversitySakuraJapan
  4. 4.Department of Aquatic EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  5. 5.Environment and Climate Change CanadaBurlingtonCanada
  6. 6.National Institute of Water & Atmospheric ResearchHamiltonNew Zealand
  7. 7.EcoLabUniversité de Toulouse, CNRS, INPT, UPSToulouseFrance
  8. 8.Université de Lorraine, LIEC UMR 7360 CNRSMetzFrance
  9. 9.School of GeographyQueen Mary University of LondonLondonUK
  10. 10.Finnish Environment Institute SYKEFreshwater CentreOuluFinland
  11. 11.Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
  12. 12.UmweltbundesamtBerlinGermany
  13. 13.Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNAVilleurbanneFrance
  14. 14.Faculty of Environmental Engineering and Spatial ManagementPoznan University of Life SciencesPoznanPoland
  15. 15.Biological & Environmental Science, Faculty of Natural ScienceUniversity of StirlingStirlingUK
  16. 16.Wildfowl & Wetlands TrustGloucestershireUK

Personalised recommendations