Sediment distribution in shallow estuaries at fine scale: in situ evidence of the effects of three-dimensional structural complexity of mangrove pneumatophores

Abstract

One of the main services offered by mangroves is their capacity for trapping sediment. We investigated how spatial complexity of pneumatophores of Avicennia marina may influence fine-scale sediment particle size distribution. Using realistic three-dimensional models captured from pneumatophore patches, indices of complexity (the area/volume ratio, the Getis-Ord Gi* statistic) were calculated to quantify mangrove root structural complexity in five 1 × 1 m2 plots. The complexity of pneumatophores in 16 0.25 × 0.25 m2 subplots in each of the 5 plots was measured and its relationship with the relative abundance of fine sediment particles (clay and silt, <63 µm) was assessed. Results showed the complexity of the neighbouring subplots in the direction of incoming water was a major factor driving the trapping of suspended silt and clay, thus underpinning the function of mangrove aboveground structures in the distribution of fine particles. This simple low-cost technique to measure the complexity of mangroves demonstrates how further investigations may quantify the relationship between this complexity and their capacity to trap sediment with data derived from actual real-world models rather than based on simplistic, simulated structures. This information will be valuable in guiding future efforts in mangrove rehabilitation and restoration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bakker, W., C. Hulsbergen, P. Roelse, C. De Smit & J. Svasek, 1984. Permeable groynes: experiments and practice in the Netherlands. Coastal Engineering Proceedings 1.

  2. Bouma, T., L. Van Duren, S. Temmerman, T. Claverie, A. Blanco-Garcia, T. Ysebaert & P. Herman, 2007. Spatial flow and sedimentation patterns within patches of epibenthic structures: combining field, flume and modelling experiments. Continental Shelf Research 27: 1020–1045.

    Article  Google Scholar 

  3. Feagin, R., S. Lozada-Bernard, T. Ravens, I. Möller, K. Yeager & A. Baird, 2009. Does vegetation prevent wave erosion of salt marsh edges? Proceedings of the National Academy of Sciences of USA 106: 10109–10113.

    CAS  Article  Google Scholar 

  4. Ferrari, R., D. McKinnon, H. He, R. N. Smith, P. Corke, M. González-Rivero, P. J. Mumby & B. Upcroft, 2016. Quantifying multiscale habitat structural complexity: a cost-effective framework for underwater 3D modelling. Remote Sensing 8: 113.

    Article  Google Scholar 

  5. Fleming, I., A. G. Finstad, S. Einum, L. M. Sættem & B. A. Hellen, 2010. Spatial distribution of Atlantic salmon (Salmo salar) breeders: among-and within-river variation and predicted consequences for offspring habitat availability. Canadian Journal of Fisheries and Aquatic Sciences 67: 1993–2001.

    Article  Google Scholar 

  6. Furukawa, K. & E. Wolanski, 1996. Sedimentation in mangrove forests. Mangroves and Salt Marshes 1: 3–10.

    Article  Google Scholar 

  7. Furukawa, K., E. Wolanski & H. Mueller, 1997. Currents and sediment transport in mangrove forests. Estuarine, Coastal and Shelf Science 44: 301–310.

    CAS  Article  Google Scholar 

  8. Gedan, K. B., M. L. Kirwan, E. Wolanski, E. B. Barbier & B. R. Silliman, 2011. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change 106: 7–29.

    Article  Google Scholar 

  9. Giri, C., E. Ochieng, L. L. Tieszen, Z. Zhu, A. Singh, T. Loveland, J. Masek & N. Duke, 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20: 154–159.

    Article  Google Scholar 

  10. Gruwez, V., B. Verheyen, P. Wauters & A. Bolle, 2014. 2DH morphodynamic time-dependent hindcast modelling of a groyne system in Ghana. Paper Presented at the 11th International Conference on Hydroscience and Engineering.

  11. Gu, Z.-P., R. Akahori & S. Ikeda, 2011. Study on the transport of suspended sediment in an open channel flow with permeable spur dikes. International Journal of Sediment Research 26: 96–111.

    Article  Google Scholar 

  12. Kamal, S., S. Y. Lee & J. Warnken, 2014. Investigating three-dimensional mesoscale habitat complexity and its ecological implications using low-cost RGB-D sensor technology. Methods in Ecology and Evolution 5: 845–853.

    Article  Google Scholar 

  13. Kathiresan, K., 2003. How do mangrove forests induce sedimentation? Revista de biologia tropical 51: 355–359.

    CAS  PubMed  Google Scholar 

  14. Krauss, K. W., J. A. Allen & D. R. Cahoon, 2003. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuarine, Coastal and Shelf Science 56: 251–259.

    Article  Google Scholar 

  15. Kumara, M., L. Jayatissa, K. Krauss, D. Phillips & M. Huxham, 2010. High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 164: 545–553.

    CAS  Article  PubMed  Google Scholar 

  16. Lee, S. Y., J. H. Primavera, F. Dahdouh-Guebas, K. McKee, J. O. Bosire, S. Cannicci, K. Diele, F. Fromard, N. Koedam, C. Marchand, I. Mendelssohn, N. Mukherjee & S. Record, 2014. Ecological role and services of tropical mangrove ecosystems: a reassessment. Global Ecology and Biogeography 23: 726–743.

    Article  Google Scholar 

  17. Liénard, J., K. Lynn, N. Strigul, B. K. Norris, D. Gatziolis, J. C. Mullarney, K. R. Bryan & S. M. Henderson, 2016. Efficient three-dimensional reconstruction of aquatic vegetation geometry: estimating morphological parameters influencing hydrodynamic drag. Estuarine, Coastal and Shelf Science 178: 77–85.

    Article  Google Scholar 

  18. Lovelock, C. E., D. R. Cahoon, D. A. Friess, G. R. Guntenspergen, K. W. Krauss, R. Reef, K. Rogers, M. L. Saunders, F. Sidik & A. Swales, 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526: 559–563.

    CAS  Article  PubMed  Google Scholar 

  19. Lyimo, T. & D. Mushi, 2007. Sulfide concentration and redox potential patterns in mangrove forests of Dar es Salaam: effects on Avicennia marina and Rhizophora mucronata seedling establishment. Western Indian Ocean Journal of Marine Science 4: 163–174.

    Article  Google Scholar 

  20. Lynch, J. C., J. R. Meriwether, B. A. McKee, F. Veraherrera & R. R. Twilley, 1989. Recent accretion in mangrove ecosystem based on Cs-137 and Pb-210. Estuaries 12: 284–299.

    CAS  Article  Google Scholar 

  21. Nagelkerken, I., A. M. De Schryver, M. C. Verweij, F. Dahdouh-Guebas, G. van der Velde & N. Koedam, 2010. Differences in root architecture influence attraction of fishes to mangroves: a field experiment mimicking roots of different length, orientation, and complexity. Journal of Experimental Marine Biology and Ecology 396: 27–34.

    Article  Google Scholar 

  22. Nepf, H. M., 2012. Flow and transport in regions with aquatic vegetation. Annual Review of Fluid Mechanics 44: 123–142.

    Article  Google Scholar 

  23. Nguyen, H. Y. T., D. M. Cao & K. Schmitt, 2013. Soil particle-size composition and coastal erosion and accretion study in Soc Trang Mangrove Forests. Journal of Coastal Conservation 17: 93–104.

    Article  Google Scholar 

  24. Ohira, W., K. Honda, M. Nagai & A. Ratanasuwan, 2013. Mangrove stilt root morphology modeling for estimating hydraulic drag in tsunami inundation simulation. Trees 27: 141–148.

    Article  Google Scholar 

  25. Ong, M. C., B. Y. Kamaruzzaman & M. S. Noor Azhar, 2012. Sediment characteristic studies in the surface sediment from Kemaman Mangrove Forest, Terengganu, Malaysia. Oriental Journal of Chemistry 28: 1639–1644.

    CAS  Article  Google Scholar 

  26. Phillips, D. H., M. P. Kumara, L. P. Jayatissa, K. W. Krauss & M. Huxham, 2017. Impacts of mangrove density on surface sediment accretion, belowground biomass and biogeochemistry in Puttalam Lagoon, Sri Lanka. Wetlands 1–13 (in press).

  27. Pielou, E., 1966. Shannon’s formula as a measure of specific diversity: its use and misuse. American Naturalist 100: 463–465.

    Article  Google Scholar 

  28. Quartel, S., A. Kroon, P. G. E. F. Augustinus, P. Van Santen & N. H. Tri, 2007. Wave attenuation in coastal mangroves in the Red River Delta, Vietnam. Journal of Asian Earth Sciences 29: 576–584.

    Article  Google Scholar 

  29. Rogers, K., N. Saintilan & H. Heijnis, 2005. Mangrove encroachment of salt marsh in Western Port Bay, Victoria: the role of sedimentation, subsidence, and sea level rise. Estuaries 28: 551–559.

    Article  Google Scholar 

  30. Scoffin, T. P., 1970. The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas. Journal of Sedimentary Research 40: 249–273.

    Article  Google Scholar 

  31. Spenceley, A., 1977. The role of pneumatophores in sedimentary processes. Marine Geology 24: 31–37.

    Article  Google Scholar 

  32. Uijttewaal, W. S., 2005. Effects of groyne layout on the flow in groyne fields: laboratory experiments. Journal of Hydraulic Engineering 131: 782–791.

    Article  Google Scholar 

  33. Van Santen, P., P. G. E. F. Augustinus, B. M. Janssen-Stelder, S. Quartel & N. H. Tri, 2007. Sedimentation in an estuarine mangrove system. Journal of Asian Earth Sciences 29: 566–575.

    Article  Google Scholar 

  34. Warren, J. H. & A. J. Underwood, 1986. Effects of burrowing crabs on the topography of mangrove swamps in New South Wales. Journal of Experimental Marine Biology and Ecology 102: 223–235.

    Article  Google Scholar 

  35. Wolanski, E., 1992. Hydrodynamics of mangrove swamps and their coastal waters. Hydrobiologia 247: 141–161.

    Article  Google Scholar 

  36. Wolanski, E., 1995. Transport of sediment in mangrove swamps. Hydrobiologia 295: 31–42.

    Article  Google Scholar 

  37. Wolanski, E., N. N. Huan, N. H. Nhan & N. N. Thuy, 1996. Fine-sediment dynamics in the Mekong River Estuary, Vietnam. Estuarine, Coastal and Shelf Science 43: 565–582.

    Article  Google Scholar 

  38. Young, B. M. & E. L. Harvey, 1996. A spatial analysis of the relationship between mangrove (Avicennia marina var. australasica) physiognomy and sediment accretion in the Hauraki Plains, New Zealand. Estuarine, Coastal and Shelf Science 42: 231–246.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Catchment Management Unit of the City of Gold Coast for support during the field surveys. SK and MB were supported by Postgraduate Scholarships from Griffith University. SYL acknowledges financial support from the Urban Marine Fish Habitat Research Program of Queensland Fisheries.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shing Yip Lee.

Additional information

Guest editors: K. W. Krauss, I. C. Feller, D. A. Friess & R. R. Lewis III / Causes and Consequences of Mangrove Ecosystem Responses to an Ever-Changing Climate

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamal, S., Warnken, J., Bakhtiyari, M. et al. Sediment distribution in shallow estuaries at fine scale: in situ evidence of the effects of three-dimensional structural complexity of mangrove pneumatophores. Hydrobiologia 803, 121–132 (2017). https://doi.org/10.1007/s10750-017-3178-3

Download citation

Keywords

  • Mangrove
  • Particle size
  • Sediment trapping
  • Structural complexity
  • 3D models