Skip to main content

Modulation of near-bed hydrodynamics by freshwater mussels in an experimental channel

Abstract

Freshwater mussels are important ecosystem engineers, and recent studies have illustrated their many ecological contributions, but little is known about the interaction between mussels and their surrounding flow environment at the organism scale. In the present experimental campaign, we examine the hydraulic interactions between mussels and open-channel flow. We quantify how a mussel-covered bed alters bed roughness and near-bed turbulent flow, determine the filter behavior and capacity of live Lampsilis siliquoidea, and design a model mussel to simulate live mussel filtering to examine the impact of the biologically mediated activity of filter feeding on near-bed turbulent flow. In comparison to a gravel bed, a mussel-covered bed increased shear velocity by 28% and bed roughness by nearly 300%, and significantly reduced near-bed flow velocity. The filter velocity in L. siliquoidea varied within and between individuals, and ranged from 0.4 to 20 cm/s. The excurrent flow of the model mussel accurately simulated excurrent flow observed in live mussels and, when subjected to various boundary conditions, altered water velocity and turbulent kinetic energy downstream. The ability to describe and quantify these hydrodynamic interactions provides new insight into how mussels modulate near-bed flow and mixing processes, which can contribute to future conservation efforts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Allen, D. C. & C. C. Vaughn, 2009. Burrowing behavior of freshwater mussels in experimentally manipulated communities. Journal of the North American Benthological Society 28: 93–100.

    Article  Google Scholar 

  • Allen, D. C. & C. C. Vaughn, 2010. Complex hydraulic and substrate variables limit freshwater mussel species richness and abundance. Journal of the North American Benthological Society 29: 383–394.

    Article  Google Scholar 

  • Allen, D. C., C. C. Vaughn, J. F. Kelly, J. T. Cooper & M. H. Engel, 2012. Bottom-up biodiversity effects increase resource subsidy flux between ecosystems. Ecology 93: 2165–2174.

    Article  PubMed  Google Scholar 

  • Amyot, J. P. & J. A. Downing, 1997. Seasonal variation in vertical and horizontal movement of the freshwater bivalve Elliptio complanata (Mollusca: Unionidae). Freshwater Biology 37: 345–354.

    Article  Google Scholar 

  • Amyot, J. P. & J. A. Downing, 1998. Locomotion in Elliptio complanata (Mollusca: Unionidae): a reproductive function? Freshwater Biology 39: 351–358.

    Article  Google Scholar 

  • Atkinson, C. L., C. C. Vaughn, K. J. Forshay & J. T. Cooper, 2013. Aggregated filter-feeding consumers alter nutrient limitation: consequences for ecosystem and community dynamics. Ecology 94: 1359–1369.

    Article  PubMed  Google Scholar 

  • Atkinson, C. L., J. F. Kelly & C. C. Vaughn, 2014. Tracing consumer-derived nitrogen in riverine food webs. Ecosystems 17: 485–496.

    CAS  Article  Google Scholar 

  • Barnes, G. E., 1962. The behaviour of unrestrained Anodonta. Animal Behavior 10: 174–176.

    Article  Google Scholar 

  • Beckett, D. C., B. W. Green, S. A. Thomas & A. C. Miller, 1996. Epizoic invertebrate communities on upper Mississippi River unionid bivalves. American Midland Naturalist 135: 102–114.

    Article  Google Scholar 

  • Bennett, S. J., J. S. Bridge & J. L. Best, 1998. Fluid and sediment dynamics of upper-stage plane beds. Journal of Geophysical Research 103: 1239–1274.

    Article  Google Scholar 

  • Boudreau, B. & B. B. Jorgensen, 2001. The Benthic Boundary Layer. Oxford University Press, Oxford.

    Google Scholar 

  • Bridge, J. S., 2003. Rivers and Floodplains: Forms, Processes, and Sedimentary Record. Blackwell Publishing, Oxford.

    Google Scholar 

  • Bridge, J. S. & S. J. Bennett, 1992. A model for the entrainment and transport of sediment grains of mixed sizes, shapes, and densities. Water Resources Research 28: 337–363.

    Article  Google Scholar 

  • Cardinale, B. J., E. R. Gelmann & M. A. Palmer, 2004. Net spinning caddisflies as stream engineers: the influence of Hydropsyche on benthic substratbe stability. Functional Ecology 18: 381–387.

    Article  Google Scholar 

  • Chen, L., 1998. The respiratory physiology and energy metabolism of freshwater mussels and their responses to lack of oxygen. Dissertation, Virginia Polytechnical Institute and State University, Blacksburg.

  • Constantinescu, G., S. Miyawaki & Q. Liao, 2013. Flow and turbulence structure past a cluster of freshwater mussels. Journal of Hydraulic Engineering 139: 347–358.

    Article  Google Scholar 

  • Englund, V. & M. Heino, 1994. Valve movement of Anodonta anatina and Unio tumidus (Bivalvia, Unionidae) in a eutrophic lake. Annales Zoologici Fennici 31: 257–262.

    Google Scholar 

  • Francoeur, S. N., A. Pinowska, T. A. Clason, S. Makosky & R. L. Lowe, 2002. Unionid bivalve influence on benthic algal community composition in a Michigan Lake. Journal of Freshwater Ecology 17: 489–500.

    Article  Google Scholar 

  • Gangloff, M. M. & J. W. Feminella, 2007. Stream channel geomorphology influences mussel abundance in southern Appalachian streams, USA. Freshwater Biology 52: 64–74.

    Article  Google Scholar 

  • Gende, S. M., R. T. Edwards, M. F. Wilson & M. S. Wipfli, 2002. Pacific salmon in aquatic and terrestrial ecosystems. Bioscience 52: 917–928.

    Article  Google Scholar 

  • Goring, D. G. & V. I. Nikora, 2002. Despiking acoustic Doppler velocimeter data. Journal of Hydraulic Engineering 128: 117–126.

    Article  Google Scholar 

  • Gurnell, A. M., 2014. Plants as river system engineers. Earth Surface Processes and Landforms 39: 4–25.

    Article  Google Scholar 

  • Gutierrez, J. L., C. G. Jones, D. L. Strayer & O. O. Iribarne, 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101: 79–90.

    Article  Google Scholar 

  • Haag, W., 2012. North American Freshwater Mussels: Natural History, Ecology, and Conservation. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Hardison, B. & J. Layzer, 2001. Relations between complex hydraulics and the localized distribution of mussels in three regulated rivers. Regulated Rivers-Research & Management 17: 77–84.

    Article  Google Scholar 

  • Hart, D. D. & C. M. Finelli, 1999. Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annual Review of Ecology and Systematics 30: 363–395.

    Article  Google Scholar 

  • Hassan, M. A., E. L. Petticrew, D. R. Montgomery, A. S. Gottesfield & J. F. Rex, 2011. Salmon as geomorphic agents and ecosystem engineers in gravel-bed rivers: the effect of fish and floods on sediment mobility and habitat suitability. Paper presented at the Stream Restoration in Dynamic Fluvial Systems, Washington, DC.

  • Howard, J. & K. Cuffey, 2003. Freshwater mussels in a California North Coast Range river: occurrence, distribution, and controls. Journal of the North American Benthological Society 22: 63–77.

    Article  Google Scholar 

  • Howard, J. K. & K. M. Cuffey, 2006. The functional role of native freshwater mussels in the fluvial benthic environment. Freshwater Biology 51: 460–474.

    Article  Google Scholar 

  • Imlay, M. J., 1968. Environmental factors in activity rhythms of the freshwater clam Elliptio complanatus catawbensis (Lea). American Midland Naturalist 80: 508–528.

    Article  Google Scholar 

  • Janetski, D. J., D. T. Chaloner, S. D. Tiegs & G. A. Lamberti, 2009. Pacific salmon effects on stream ecosystems: a quantitative synthesis. Oecologia 159: 582–595.

    Article  Google Scholar 

  • Jones, C. G., J. H. Lawton & M. Shachak, 1994. Organisms as ecosystem engineers. Oikos 69: 373–386.

    Article  Google Scholar 

  • Kryger, J. & H. U. Riisgård, 1988. Filtration rate capacities in 6 species of European freshwater bivalves. Oecologia 77: 34–38.

    Article  PubMed  Google Scholar 

  • Lewis, J. B. & P. N. Riebel, 1984. The effect of substrate on burrowing in freshwater mussels (Unionidae). Canadian Journal of Zoology 62: 2023–2025.

    Article  Google Scholar 

  • Lohrer, A. M., S. F. Thrush & M. M. Gibbs, 2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431: 1092–1095.

    CAS  Article  PubMed  Google Scholar 

  • McCorkle, S., T. C. Shirley & T. H. Dietz, 1979. Rhythms of activity and oxygen consumption in the common pond clam, Ligumia subrostrata (Say). Canadian Journal of Zoology 57: 1960–1964.

    Article  Google Scholar 

  • McLatchie, S., 1992. Time-series measurement of grazing rates of zooplankton and bivalves. Journal of Plankton Research 14: 183–200.

    Article  Google Scholar 

  • McMahon, R. F. & A. E. Bogan, 2001. Mollusca: Bivalvia. In Thorp, J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates. Academic Press, San Diego.

    Google Scholar 

  • Moore, J. W., 2006. Animal ecosystem engineers in streams. Bioscience 56: 237–246.

    Article  Google Scholar 

  • Naiman, R. J., C. A. Johnston & J. C. Kelley, 1988. Alteration of North American streams by beaver. Bioscience 38: 753–762.

    Article  Google Scholar 

  • Nakano, D., M. Yamamoto & T. Okino, 2005. Ecosystem engineering by larvae of net-spinning stream caddisflies creates a habitat on the upper surface of stones for mayfly nymphs with a low resistance to flows. Freshwater Biology 50: 1492–1498.

    Article  Google Scholar 

  • Nikora, V., 2010. Hydrodynamics of aquatic ecosystems: an interface between ecology, biomechanics and environmental fluid mechanics. River Research and Applications 26: 367–384.

    Article  Google Scholar 

  • O’Riordan, C. A., S. G. Monismith & J. R. Koseff, 1993. An experimental study of concentration boundary layer formation over a bed of model bivalves. Limnology and Oceanography 38: 1712–1729.

    Article  Google Scholar 

  • O’Riordan, C. A., S. G. Monismith & J. R. Koseff, 1995. The effect of bivalve excurret jet dynamics on mass transfer in a benthic boundary layer. Limnology and Oceanography 40: 330–344.

    Article  Google Scholar 

  • Pollock, M. T., J. M. Beechie, C. Wheaton, N. Jordan, N. Bouwes, N. Weber & C. Volk, 2014. Using beaver dams to restore incised stream ecosystems. Bioscience 64: 279–290.

    Article  Google Scholar 

  • Price, R. E. & F. R. Schiebe, 1978. Measurements of velocity from excurrent siphons of freshwater clams. The Nautilus 92: 67–69.

    Google Scholar 

  • Pusch, M., J. Siefert & N. Walz, 2001. Filtration and respiration rates of two unionid species and their impact on the water quality of a lowland river. In Bauer, F. & K. Wachtler (eds), Ecology and Evolution of the Freshwater Mussels Unionoida. Springer, Heidelberg: 317–326.

    Chapter  Google Scholar 

  • Rajaratnam, N., 1976. Turbulent Jets. Elsevier Scientific Publishing Company, Amsterdam.

    Google Scholar 

  • Riisgård, H. U., 2001. On measurement of filtration rates in bivalves – the stony road to reliable data: review and interpretation. Marine Ecology Progress Series 211: 275–291.

    Article  Google Scholar 

  • Riisgård, H. U., B. H. Jorg, K. K. Lundgreen, F. Storti, J. H. Walther, K. E. Meyer & P. S. Larsen, 2011. The exhalent jet of mussels Mytilus edulis. Marine Ecology Progress Series 437: 147–164.

    Article  Google Scholar 

  • Spooner, D. E. & C. C. Vaughn, 2006. Context-dependent effects of freshwater mussels on the benthic community. Freshwater Biology 51: 1016–1024.

    CAS  Article  Google Scholar 

  • Spooner, D. E., C. C. Vaughn & H. S. Galbraith, 2012. Species traits and environmental conditions govern the relationship between biodiversity effects across trophic levels. Oecologia 168: 533–548.

    Article  PubMed  Google Scholar 

  • Statzner, B., 2008. How views about flow adaptations of benthic stream invertebrates changed over the last century. International Review of Hydrobiology 93: 593–605.

    Article  Google Scholar 

  • Statzner, B. & D. Borchardt, 1994. Longitudinal patterns and processes along streams: modelling ecological responses to physical gradients. In Giller, P. S., A. G. Hildrew & D. G. Raffaelli (eds), Aquatic Ecology: Scale, Pattern, and Process. Blackwell Scientific Publications, Oxford: 113–140.

    Google Scholar 

  • Statzner, B., J. Gore & V. Resh, 1988. Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American Benthological Society 7: 307–360.

    Article  Google Scholar 

  • Strayer, D., 1999. Use of flow refuges by unionid mussels in rivers. Journal of the North American Benthological Society 18: 468–476.

    Article  Google Scholar 

  • Strayer, D. L., 2008. Freshwater Mussel Ecology: A Multifactor Approach to Distribution and Abundance. University of California Press, Berkeley.

    Book  Google Scholar 

  • Strayer, D. L., D. C. Hunter, L. C. Smith & C. K. Borg, 1994. Distribution, abundance, and roles of freshwater clams (Bivalvia: Unionidae) in the freshwater tidal Hudson River. Freshwater Biology 31: 239–248.

    Article  Google Scholar 

  • Vaughn, C. C. & C. C. Hakenkamp, 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46: 1431–1446.

    Article  Google Scholar 

  • Vaughn, C. C. & D. E. Spooner, 2006. Unionid mussels influence macroinvertebrate assemblage structure in streams. Journal of the North American Benthological Society 25: 691–700.

    Article  Google Scholar 

  • Vaughn, C. C., S. J. Nichols & D. E. Spooner, 2008. Community and foodweb ecology of freshwater mussels. Journal of the North American Benthological Society 27: 409–423.

    Article  Google Scholar 

  • von Karmen, T., 1931. Mechanical Similitude and Turbulence. Technical Memorandum No 611. National Advisory Committee for Aeronautics.

  • Watters, G. T., S. H. O’Dee & S. Chordas, 2001. Patters of vertical migration in freshwater mussels (Bivalvia: Unionida). Journal of Freshwater Ecology 16: 541–549.

    Article  Google Scholar 

  • Witze, P. O. & H. A. Dwyer, 1976. The turbulent radial jet. Journal of Fluid Mechanics 75: 401–417.

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Mohammad Ghaneeizad for his help and guidance in optimizing, collecting, and processing PIV data. We also thank Kevin Cullinan for his technical support and assistance. Four anonymous reviewers provided comments that improved this manuscript. A New York Scientific Collection Permit (No. 649) allowed for collection and possession of live mussels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon J. Sansom.

Additional information

Guest editors: Manuel P. M. Lopes-Lima, Ronaldo G. Sousa, Lyuba E. Burlakova, Alexander Y. Karatayev & Knut Mehler / Ecology and Conservation of Freshwater Bivalves

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sansom, B.J., Atkinson, J.F. & Bennett, S.J. Modulation of near-bed hydrodynamics by freshwater mussels in an experimental channel. Hydrobiologia 810, 449–463 (2018). https://doi.org/10.1007/s10750-017-3172-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3172-9

Keywords

  • Unionidae
  • Ecosystem engineer
  • Experimental models
  • Organism-flow interactions
  • Near-bed turbulent flow
  • Biologically mediated activity