Different depths, different fauna: habitat influences on the distribution of groundwater invertebrates

Abstract

At regional and catchment scales, geology and hydrogeology strongly influence the distribution of groundwater invertebrates (stygofauna), but the fine scale distribution of stygofauna in sedimentary aquifers remains poorly studied. In this study, we examine the small-scale distribution of stygofauna in sediments of a perched aquifer in an upland swamp in south eastern Australia. We installed a series of piezometers which accessed either the full sediment profile or one of four discrete sedimentary layers in the swamp. Piezometers were sampled for stygofauna and 2H and 18O isotopes in the groundwater. The swamp contained a taxonomically diverse and abundant stygofauna, which was distributed throughout the swamp and similar in composition to that of other aquifers in the region. There were strong temporal changes in the faunal assemblages but the stimuli for these changes remain unknown. Isotope analysis indicated that the swamp water was well mixed despite localised inputs of groundwater from springs. Accordingly, we could not explore the relative influence of groundwater inputs on fauna; however, we have shown clearly that stygofauna were strongly influenced by sediment properties, with the abundance of stygofauna in the dense, fine sandy sediments being significantly lower than in the coarser sedimentary layers above and below.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Arya, L. M. & J. F. Paris, 1981. A physicoempirical model to predict the soil moisture characteristic from particle size distribution and bulk density data. Soil Science Society of America Journal 45: 1023–1030.

    Article  Google Scholar 

  2. Boulton, A. J., M.-J. Dole-Olivier & P. Marmonier, 2003. Optimizing a sampling strategy for assessing hyporheic invertebrate biodiversity using the Bou-Rouch method: within-site replication and sample volume. Archiv für Hydrobiologie 156: 431–456.

    Article  Google Scholar 

  3. Boulton, A. J., P. Marmonier & P. E. X. Sarriquet, 2007. Hyporheic invertebrate community composition in streams of varying salinity in south-western Australia: diversity peaks at intermediate thresholds. River Research and Applications 23: 579–594.

    Article  Google Scholar 

  4. Boulton, A. J., G. Fenwick, P. Hancock & M. Harvey, 2008. Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebrate Systematics 22: 103–116.

    Article  Google Scholar 

  5. Bureau of Meteorology (BOM) 2016. Climate data online. Australian Bureau of Meteorology [available on internet at http://www.bom.gov.au/climate/data/index.shtml, accessed November 2016].

  6. Camacho, A. I. & P. Hancock, 2010. A new genus of Parabathynellidae (Crustacea: Bathynellacea) in New South Wales, Australia. Journal of Natural History 44: 1081–1094.

    Article  Google Scholar 

  7. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  8. Clarke, K. R. & R. H. Green, 1988. Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series 46: 213–226.

    Article  Google Scholar 

  9. Cowley, K., K. Fryirs & G. C. Hose, 2016. Identifying key sedimentary indicators of geomorphic structure and function of upland swamps in the Blue Mountains for use in condition assessment and monitoring. Catena. 147: 564–577.

    CAS  Article  Google Scholar 

  10. Cowley K, K. Fryirs, R. Chisari & G. C. Hose, subm. Water sources and storage in Upland Swamps of Eastern NSW: implications for groundwater management and climate change. Journal of Hydrology. In review.

  11. Datry, T., F. Malard & J. Gibert, 2005. Response of invertebrate assemblages to increased groundwater recharge rates in a phreatic aquifer. Journal of the North American Benthological Society 24: 461–477.

    Article  Google Scholar 

  12. De Deckker, P., 2002. Australian Non-Marine Ostracoda (Crustacea) Murray Darling Freshwater Research Centre Taxonomy Workshop Presentation 1 February 2002. Murray Darling Freshwater Research Centre, Wodonga.

    Google Scholar 

  13. Eberhard, S. M., S. A. Halse & W. F. Humphreys, 2005. Stygofauna in the Pilbara region, north-west Western Australia: a review. Journal of the Royal Society of Western Australia 88: 167–176.

    Google Scholar 

  14. Freidman, B. L. & K. Fryirs, 2015. Rehabilitating upland swamps using environmental histories: a case study of the Blue Mountains Peat Swamps, Eastern Australia. Geografiska Annaler, Series A: Physical Geography 97: 337–353.

    Article  Google Scholar 

  15. Fryirs, K., J. Gough & G. C. Hose, 2014a. The geomorphic character and hydrological function of an upland swamp, Budderoo Plateau, Southern Highlands, NSW, Australia. Physical Geography 35: 313–334.

    Article  Google Scholar 

  16. Fryirs, K., B. Freidman, R. Williams & G. Jacobsen, 2014b. Peatlands in Eastern Australia? Sedimentology and age structure of Temperate Highland Peat Swamps on Sandstone (THPSS) in the Southern Highlands and Blue Mountains of NSW, Australia. The Holocene. 24(11): 1527–1538.

    Article  Google Scholar 

  17. Gibert, J., J. A. Stanford, M. J. Dole-Oliver & J. Ward, 1994. Basic Attributes of Groundwater Ecosystems and Prospects for Research. In Gibert, J., D. Danielopol & J. Stanford (eds), Groundwater Ecology. Academic Press, California: 7–40.

    Google Scholar 

  18. Gibert, J., D. Culver, M. Dole-Olivier, F. Malard, M. Christman & L. Deharveng, 2009. Assessing and conserving groundwater biodiversity: synthesis and perspectives. Freshwater Biology 54: 930–941.

    Article  Google Scholar 

  19. Glanville, K., C. Schulz, M. Tomlinson & D. Butler, 2016. Biodiversity and biogeography of groundwater invertebrates in Queensland, Australia. Subterranean Biology 17: 55–76.

    Article  Google Scholar 

  20. Griebler, C. & M. Avramov, 2015. Groundwater ecosystem services: A review. Freshwater Sciences 34: 355–367.

    Article  Google Scholar 

  21. Hahn, H. J., 2006. The GW-Fauna-Index: a first approach to a quantitative ecological assessment of groundwater habitats. Limnologica 36: 119–137.

    Article  Google Scholar 

  22. Hancock, P. J. & A. J. Boulton, 2008. Stygofauna biodiversity and endemism in four alluvial aquifers in eastern Australia. Invertebrate Systematics 22: 117–126.

    Article  Google Scholar 

  23. Hancock, P. J. & A. J. Boulton, 2009. Sampling groundwater fauna: efficiency of rapid assessment methods tested in bores in eastern Australia. Freshwater Biology 54: 902–917.

    Article  Google Scholar 

  24. Holden, J., 2009. Flow through macropores of different size classes in blanket peat. Journal of Hydrology 364: 342–348.

    Article  Google Scholar 

  25. Holden, J. & T. P. Burt, 2003. Hydrological studies on blanket peat: the significance of the acrotelm-catotelm model. Journal of Ecology 91: 6–102.

    Article  Google Scholar 

  26. Hose, G. C. 2008. Stygofauna baseline assessment for Kangaloon Borefield Investigations- Southern Highlands, NSW. Report to Sydney Catchment Authority, Access Macquarie Ltd, North Ryde

  27. Hose, G. C. 2009. Stygofauna baseline assessment for Kangaloon Borefield Investigations- Southern Highlands, NSW. Supplementary Report – Stygofauna molecular studies. Report to Sydney Catchment Authority, Access Macquarie Ltd, North Ryde.

  28. Hose, G. C., J. Bailey, C. Stumpp & K. Fryirs, 2014. Groundwater depth and topography correlate with vegetation structure of an upland peat swamp, Budderoo Plateau, NSW, Australia. Ecohydrology 7: 1392–1402.

    Google Scholar 

  29. Hose, G. C., M. G. Asmyhr, S. J. B. Cooper & W. F. Humphreys, 2015. Down Under Down Under: Austral Groundwater Life. In Stow, A., N. Maclean & G. I. Holwell (eds), Austral Ark. Cambridge University Press, Cambridge: 512–536.

    Google Scholar 

  30. Hose, G. C., K. Symington, M. J. Lott & M. J. Lategan, 2016. The toxicity of arsenic (III), chromium (VI) and zinc to groundwater copepods. Environmental Science and Pollution Research 23: 18704–18713.

    CAS  Article  PubMed  Google Scholar 

  31. Hughes, C. E. & J. Crawford, 2013. Spatial and temporal variation in precipitation isotopes in the Sydney Basin, Australia. Journal of Hydrology 489: 42–55.

    CAS  Article  Google Scholar 

  32. Humphreys, W. F., 2006. Aquifers: the ultimate groundwater dependent ecosystem. Australian Journal Botany 54: 115–132.

    Article  Google Scholar 

  33. Humphreys, W. F., 2008. Rising from down under; developments in subterranean biodiversity in Australia from groundwater fauna perspective. Invertebrate Systematics 22: 85–101.

    Article  Google Scholar 

  34. Jacobsen, G., J. Jankowski & R. S. Abell, 1991. Groundwater and surface water interaction at Lake George, New South Wales. BMR Journal of Australian Geology and Geophysics. 12: 161–190.

    Google Scholar 

  35. Korbel, K. & G. C. Hose, 2015. Water quality, habitat, site or climate? Identifying environmental correlates of the distribution of groundwater biota. Freshwater Sciences 34: 329–343.

    Article  Google Scholar 

  36. Korbel, K., P. J. Hancock, P. Serov, R. P. Lim & G. C. Hose, 2013a. Groundwater ecosystems change with landuse across a mixed agricultural landscape. Journal of Environmental Quality 42: 380–390.

    CAS  Article  PubMed  Google Scholar 

  37. Korbel, K., R. P. Lim & G. C. Hose, 2013b. An inter-catchment comparison of groundwater biota in the cotton growing region of NW NSW. Crop and Pasture Science 64: 1195–1208.

    Google Scholar 

  38. Korbel, K., A. Chariton, P. Greenfield, S. Stephenson & G. C. Hose, 2017. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems. Scientific Reports. 7: 40702.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Larned, S. T., 2012. Phreatic groundwater ecosystems: research frontiers for freshwater ecology. Freshwater Biology. 57: 885–906.

    Article  Google Scholar 

  40. Mauclaire, L., J. Gibert & C. Claret, 2000. Do bacteria and nutrients control faunal assemblages in alluvial aquifers? Archiv für Hydrobiologie 148: 85–98.

    CAS  Article  Google Scholar 

  41. Maurice, L. & J. Bloomfield, 2012. Stygobitic Invertebrates in Groundwater – A Review from a Hydrogeological Perspective. Freshwater Reviews 5: 51–71.

    Article  Google Scholar 

  42. Mencio, A., K. L. Korbel & G. C. Hose, 2014. River-aquifer interactions and their relationship to stygofauna assemblages: a case study of the Gwydir River alluvial aquifer (New South Wales, Australia). Science of the Total Environment 479(480): 292–305.

    Article  PubMed  Google Scholar 

  43. Morris, B. L., A. R. L. Lawrence, P. J. C. Chilton, B. Adams, R. C. Calow & B. A. Klinck, 2003. Groundwater and Its Susceptibility to Degradation: A Global Assessment of the Problem and Options for Management. Early Warning and Assessment Report Series, RS. 03-3. United Nations Environment Programme, Nairobi, Kenya.

  44. PB, 2006. Hydrochemical and Environmental Isotope Sampling Program – Upper Nepean Groundwater Investigation Sites. Parsons Brinckerhoff, Sydney

  45. Robertson, A. L., J. W. N. Smith, T. Johns & G. S. Proudlove, 2009. The distribution and diversity of stygobites in Great Britain: an analysis to inform groundwater management. Quarterly Journal of Engineering Geology and Hydrogeology 42: 359–368.

    Article  Google Scholar 

  46. Schmidt, S. I. & H. J. Hahn, 2012. What is groundwater and what does this mean to fauna? – An opinion. Limnologica - Ecology and Management of Inland Waters 42: 1–6.

    CAS  Article  Google Scholar 

  47. Schmidt, S. I., H. J. Hahn, T. J. Hatton & W. F. Humphreys, 2007. Do faunal assemblages reflect the exchange intensity in groundwater zones? Hydrobiologia 583: 1–19.

    CAS  Article  Google Scholar 

  48. Serov, P.A., 2002. A preliminary identification of Australian Syncarida (Crustacea). MDFRC Identification Guide No.44, CRC Freshwater Ecology, Albury, NSW, Australia.

  49. Sket, B., 2008. Can we agree on an ecological classification of subterranean animals? Journal of Natural History 42: 1549–1563.

    Article  Google Scholar 

  50. SMEC 2006. Baseline Groundwater Dependent Ecosystem Evaluation Study –Upper Nepean Groundwater Pilot Studies – Final Report. Report to Sydney Catchment Authority. SMEC Australia Pty Ltd, Sydney.

  51. Sorensen, J. P. R., L. Maurice, F. K. Edwards, D. J. Lapworth, D. S. Read, D. Allen, A. S. Butcher, L. K. Newbold, B. R. Townsend & P. J. Williams, 2013. Using boreholes as windows into groundwater ecosystems. PLoS ONE 8: e70264.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Stakman, W. P., 1966. The relation between particle size, pore size and hydraulic conductivity of sand separates. In Proceedings of the Wageningen Symposium. Water in the unsaturated zone, pages. International Association of Scientific Hydrology, Wageningen, The Netherlands: 373–384.

  53. Stein, H., C. Griebler, S. E. Berkhoff, D. Matzke, A. Fuchs & H. J. Hahn, 2012. Stygoregions - a promising approach to a bioregional classification of groundwater systems. Nature Scientific Reports 2: 673.

    Google Scholar 

  54. Strayer, D.L., 1994. Limits to biological distributions in groundwater. In Groundwater Ecology. Academic Press, New York: 287–310.

  55. Stumpp, C. & G. C. Hose, 2013. Impact of water table drawdown and drying on subterranean aquatic fauna in in vitro experiments. PLoS ONE 8(11): e78502.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tomlinson, M. 2008. A Framework for Determining Environmental Water Requirements for Alluvial Aquifer Ecosystems. Unpublished PhD thesis, University of New England, Armidale, Australia.

  57. WA EPA, 2007. Sampling methods and survey considerations for subterranean fauna in Western Australia, Technical Appendix to Guidance Statement No. 54, Western Australia Environmental Protection Authority, Perth.

  58. Wells, J. B. J., 2007. An annotated checklist and keys to the species of Copepoda Harpacticoida. Zootaxa 1568: 1–872.

    Google Scholar 

  59. Zagmajster, M., D. Eme, C. Fiser, D. Galassi, P. Marmonier, F. Stoch, J. Cornu & F. Malard, 2014. Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Global Ecology and Biogeography 23: 1135–1145.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by a Macquarie University Research and Development Grant, a grant awarded under the Department of Sustainability, Environment, Water, Population and Communities (DSEWPaC), and Australian National University (ANU) Research Program on Temperate Highland Peat Swamps on Sandstone (THPSS) and an Australian Research Council (ARC) Linkage Grant (LP130100120), all awarded to GH and KF at Macquarie University. This work was conducted under a NSW NPWS Scientific License. We are grateful for the comments of Associate Editor Stuart Halse and two anonymous reviewers which improved this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Grant C. Hose.

Additional information

Handling editor: Stuart Anthony Halse

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 20 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hose, G.C., Fryirs, K.A., Bailey, J. et al. Different depths, different fauna: habitat influences on the distribution of groundwater invertebrates. Hydrobiologia 797, 145–157 (2017). https://doi.org/10.1007/s10750-017-3166-7

Download citation

Keywords

  • Stygofauna
  • Aquifer
  • Upland swamp
  • Sediment preference
  • Temperate highland Peat Swamps on Sandstone
  • Threatened ecological community