Skip to main content

Thermal sensitivity of the crab Neosarmatium africanum in tropical and temperate mangroves on the east coast of Africa

Abstract

Mangrove forests are amongst the tropical marine ecosystems most severely affected by rapid environmental change, and the activities of key associated macrobenthic species contribute to their ecological resilience. Along the east coast of Africa, the amphibious sesarmid crab Neosarmatium africanum (=meinerti) plays a pivotal role in mangrove ecosystem functioning through carbon cycling and sediment bioturbation. In the face of rapid climate change, identifying the sensitivity and vulnerability to global warming of this species is of increasing importance. Based on a latitudinal comparison, we measured the thermal sensitivity of a tropical and a temperate population of N. africanum, testing specimens at the centre and southern limit of its distribution, respectively. We measured metabolic oxygen consumption and haemolymph dissolved oxygen content during air and water breathing within a temperature range that matched the natural environmental conditions. The results indicate different thermal sensitivities in the physiological responses of N. africanum from tropical and temperate populations, especially during air breathing. The differences observed in the thermal physiology between the two populations suggest that the effect of global warming on this important mangrove species may be different under different climate regimes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. Permanova + for primer: guide to software and statistical methods, 1st edn. Primer-E, Plymouth, 214 p.

    Google Scholar 

  2. Andreetta, A., M. Fusi, I. Cameldi, F. Cimò, S. Carnicelli & S. Cannicci, 2014. Mangrove carbon sink. Do burrowing crabs contribute to sediment carbon storage? Evidence from a Kenyan mangrove system. Journal of Sea Research 85: 524–533.

    Article  Google Scholar 

  3. Baldanzi, S., N. F. Weidberg, M. Fusi, S. Cannicci, C. D. Mcquaid & F. Porri, 2015. Contrasting environments shape thermal physiology across the spatial range of the sandhopper Talorchestia capensis. Oecologia 179: 1067–1078.

    Article  PubMed  Google Scholar 

  4. Bates, D. M., 2010. Fitting linear mixed-effects models using lme4. http://lme4.r-forge.r-project.org/lMMwR/lrgprt.pdf.

  5. Berti, R., S. Cannicci, S. Fabbroni & G. Innocenti, 2008. Notes on the structure and the use of Neosarmatium meinerti and Cardisoma carnifex burrows in a Kenyan mangrove swamp (Decapoda Brachyura). Ethology Ecology & Evolution 20: 101–113.

    Article  Google Scholar 

  6. Bright, D. B. & C. L. Hogue, 1972. A synopsis of the burrowing land crabs of the world and list of their arthropod symbionts and burrow associates. Una sinopsis mundial de los cangrejos terrestres de madrigueras y lista de sus artrópodos simbiontes y madrigueras asociadas. Contributions in Science 20: 1–58.

    Google Scholar 

  7. Clarke, A. & K. P. P. Fraser, 2004. Why does metabolism scale with temperature? Functional Ecology 18: 243–251.

    Article  Google Scholar 

  8. Deutsch, C. A., J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, D. C. Haak & P. R. Martin, 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America 105: 6668–6672.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Dittmann, S., 1996. Effects of macrobenthic burrows on infaunal communities in tropical tidal flats. Marine Ecology Progress Series 134: 119–130.

    Article  Google Scholar 

  10. Duke, N., J. O. Meynecke, S. Dittmann, A. M. Ellison, K. Anger, U. Berger, S. Cannicci, K. Diele, K. C. Ewel, C. D. Field, N. Koedam, S. Y. Lee, C. Marchand, I. Nordhaus & F. Dahdouh-Guebas, 2007. A world without mangroves? Science 317: 41–43.

    CAS  Article  PubMed  Google Scholar 

  11. Edney, E. B., 1961. The water and heat relationship of fiddler crabs (Uca spp.). Transactions of the Royal Society of South Africa 36: 71–91.

    Article  Google Scholar 

  12. Eliason, E. J., T. D. Clark, M. J. Hague, L. M. Hanson, Z. S. Gallagher, K. M. Jeffries, M. K. Gale, D. A. Patterson, S. G. Hinch & A. P. Farrell, 2011. Differences in thermal tolerance among sockeye salmon populations. Science 332: 109–112.

    CAS  Article  PubMed  Google Scholar 

  13. Fratini, S., A. Sacchi & M. Vannini, 2011. Competition for mangrove leaf litter between two East African crabs, Neosarmatium meinerti (Sesarmidae) and Cardisoma carnifex (Gecarcinidae): a case of kleptoparasitism? Journal of Ethology 29: 481–485.

    Article  Google Scholar 

  14. Frederich, M. & H. O. Pörtner, 2000. Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology 279: R1531–R1538.

    CAS  PubMed  Google Scholar 

  15. Fusi, M., F. Giomi, S. Babbini, D. Daffonchio, C. D. McQuaid, F. Porri & S. Cannicci, 2015. Thermal specialization across large geographical scales predicts the resilience of mangrove crab populations to global warming. Oikos 124: 784–795.

    Article  Google Scholar 

  16. Fusi, M., S. Cannicci, D. Daffonchio, B. Mostert, H.-O. Pörtner & F. Giomi, 2016. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface. Scientific Reports Nature Publishing Group 6: 19158.

    CAS  Article  Google Scholar 

  17. Gaitán-Espitia, J. D., L. D. Bacigalupe, T. Opitz, N. A. Lagos, T. Timmermann & M. A. Lardies, 2014. Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient. The Journal of experimental biology 217: 4379–4386.

    Article  PubMed  Google Scholar 

  18. Gaston, K. J., S. L. Chown, P. Calosi, J. Bernardo, D. T. Bilton, A. Clarke, S. Clusella-Trullas, C. K. Ghalambor, M. Konarzewski, L. S. Peck, W. P. Porter, H. O. Pörtner, E. L. Rezende, P. M. Schulte, J. I. Spicer, J. H. Stillman, J. S. Terblanche & M. van Kleunen, 2009. Macrophysiology: a conceptual reunification. The American Naturalist 174: 595–612.

    Article  PubMed  Google Scholar 

  19. Gillikin, D. P., S. De Grave & J. Tack, 2001. The occurrence of the semi-terrestrial shrimp Merguia oligodon (De Man, 1888) in Neosarmatium smithi H. Milne Edwards, 1853 burrows in Kenyan mangroves. Crustaceana 74: 505–507.

    Article  Google Scholar 

  20. Gillikin, D. P., B. De Wachter & J. F. Tack, 2004. Physiological responses of two ecologically important Kenyan mangrove crabs exposed to altered salinity regimes. Journal of Experimental Marine Biology and Ecology 301: 93–109.

    Article  Google Scholar 

  21. Gilman, E. L., J. Ellison, N. C. Duke & C. Field, 2008. Threats to mangroves from climate change and adaptation options: a review. Aquatic Botany 89: 237–250.

    Article  Google Scholar 

  22. Giomi, F. & H.-O. Pörtner, 2013. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs. Frontiers in Physiology 4: 110.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Giomi, F., C. Mandaglio, M. Ganmanee, G.-D. Han, Y.-W. Dong, G. A. Williams & G. Sarà, 2016. The importance of thermal history: costs and benefits of heat exposure in a tropical, rocky shore oyster. The Journal of experimental biology 219: 686–694.

    Article  PubMed  Google Scholar 

  24. Greenaway, P. & C. A. Farrelly, 1984. The venous system of the terrestrial crab Ocypode cordimanus (Desmarest 1825) with particular reference to the vasculature of the lungs. Journal of Morphology 181: 133–142.

    Article  Google Scholar 

  25. Hartnoll, R. G., 1975. The Grapsidae and Ocypodidae (Decapoda: Brachyura) of Tanzania. Journal of Zoology 177: 305–328.

    Article  Google Scholar 

  26. Hochachka, P. W., 1991. Temperature: the ectothermy option Phylogenetic and biochemical perspectives. Biochemistry and Molecular Biology of Fishes 1: 313–322.

    CAS  Article  Google Scholar 

  27. Hoegh-Guldberg, O. & J. F. Bruno, 2010. The impact of climate change on the world’s marine ecosystems. Science (New York, N.Y.) 328: 1523–1528.

    CAS  Article  Google Scholar 

  28. Huey, R. B., M. R. Kearney, A. Krockenberger, J. A. M. Holtum, M. Jess & S. E. Williams, 2012. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 367: 1665–1679.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kearney, M. & W. Porter, 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12: 334–350.

    Article  PubMed  Google Scholar 

  30. Kearney, M. R., A. Matzelle & B. Helmuth, 2012. Biomechanics meets the ecological niche: the importance of temporal data resolution. Journal of Experimental Biology 215: 1422–1424.

    Article  Google Scholar 

  31. Kitheka, J. U., B. O. Ohowa, B. M. Mwashote, W. S. Shimbira, J. M. Mwaluma & J. M. Kazungu, 1996. Water circulation dynamics, water column nutrients and plankton productivity in a well-flushed tropical bay in Kenya. Journal of Sea Research 35: 257–268.

    Article  Google Scholar 

  32. Kristensen, E., 2008. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. Journal of Sea Research 59: 30–43.

    Article  Google Scholar 

  33. Lee, S. Y., 1997. Potential trophic importance of the faecal material of the mangrove sesarmine crab Sesarma masse. Marine Ecology Progress Series 159: 275–284.

    Article  Google Scholar 

  34. Lee, S. Y., 2008. Mangrove macrobenthos: assemblages, services, and linkages. Journal of Sea Research 59: 16–29.

    Article  Google Scholar 

  35. Lovelock, C. E., D. R. Cahoon, D. A. Friess, G. R. Guntenspergen, K. W. Krauss, R. Reef, K. Rogers, M. L. Saunders, F. Sidik, A. Swales, N. Saintilan, L. X. Thuyen & T. Triet, 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526: 559.

    CAS  Article  PubMed  Google Scholar 

  36. Macnae, W., 1968. A general account of the fauna and Flora of Mangrove Swamps and Forests in the Indo-West-Pacific Region. Advanced in marine Biology 6: 73–270.

    Article  Google Scholar 

  37. Macnae, W. & M. Kalk, 1962. The ecology of the Mangrove Swamps at Inhaca Island, Mozambique. Journal of Ecology 50: 19–34.

    Article  Google Scholar 

  38. Marshall, D. J. & C. D. McQuaid, 2011. Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology. Proceedings Biological sciences/The Royal Society 278: 281–288.

    Article  Google Scholar 

  39. Marshall, D. J., C. D. McQuaid & G. A. Williams, 2011. Non-climatic thermal adaptation: implications for species’ responses to climate warming. Biology Letters 7: 160.

    Article  Google Scholar 

  40. Marshall, D. J., N. Baharuddin & C. D. McQuaid, 2013. Behaviour moderates climate warming vulnerability in high-rocky-shore snails: interactions of habitat use, energy consumption and environmental temperature. Marine Biology 160: 2525–2530.

    Article  Google Scholar 

  41. Micheli, F., F. Gherardi & M. Vannini, 1991. Feeding and burrowing ecology of two East African mangrove crabs. Marine Biology 111: 247–254.

    Article  Google Scholar 

  42. Nemeth, Z., F. Bonier & S. MacDougall-Shackleton, 2013. Coping with uncertainty: integrating physiology, behavior, and evolutionary ecology in a changing world. Integrative and Comparative Biology 53: 960–964.

    Article  PubMed  Google Scholar 

  43. Paaijmans, K. P., R. L. Heinig, R. A. Seliga, J. I. Blanford, S. Blanford, C. C. Murdock & M. B. Thomas, 2013. Temperature variation makes ectotherms more sensitive to climate change. Global Change Biology 19: 2373–2380.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Poloczanska, E. S., C. J. Brown, W. J. Sydeman, W. Kiessling, D. S. Schoeman, P. J. Moore, K. Brander, J. F. Bruno, L. B. Buckley, M. T. Burrows, C. M. Duarte, B. S. Halpern, J. Holding, C. V. Kappel, M. I. O’Connor, J. M. Pandolfi, C. Parmesan, F. Schwing, S. A. Thompson & A. J. Richardson, 2013. Global imprint of climate change on marine life. Nature Climate Change 3: 919–925.

    Article  Google Scholar 

  45. Porter, W. & D. Gates, 1969. Thermodynamic equilibria of animals with environment. Ecological Monographs 39: 227–244.

    Article  Google Scholar 

  46. Pörtner, H., 2001. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88: 137–146.

    Article  PubMed  Google Scholar 

  47. Quisthoudt, K., J. Adams, A. Rajkaran, F. Dahdouh-Guebas, N. Koedam & C. F. Randin, 2013. Disentangling the effects of global climate and regional land-use change on the current and future distribution of mangroves in South Africa. Biodiversity and Conservation 22: 1369–1390.

    Article  Google Scholar 

  48. R Development Core Team, 2014. R: a language and environment for statistical computing. http://www.R-project.org. R Foundation for Statistical Computing, Vienna, http://www.r-project.org.

  49. Ragionieri, L., S. Cannicci, C. D. Schubart & S. Fratini, 2010. Gene flow and demographic history of the mangrove crab Neosarmatium meinerti: a case study from the western Indian Ocean. Estuarine, Coastal and Shelf Science 86: 179–188.

    CAS  Article  Google Scholar 

  50. Ragionieri, L., S. Fratini & C. D. Schubart, 2012. Revision of the Neosarmatium meinerti species complex (Decapoda: Brachyura: Sesarmidae), with descriptions of three pseudocryptic Indo-West Pacific species. The Raffles Bulletin of Zoology 60: 71–87.

    Google Scholar 

  51. Rajkaran, A. & J. Adams, 2012. The effects of environmental variables on mortality and growth of mangroves at Mngazana Estuary, Eastern Cape, South Africa. Wetlands Ecology and Management 20: 297–312.

    Article  Google Scholar 

  52. Rezende, E. L., L. E. Castaneda & M. Santos, 2014. Tolerance landscapes in thermal ecology. Functional Ecology 28: 799–809.

    Article  Google Scholar 

  53. Ridd, P. V., 1996. Flow through animal burrows in Mangrove creeks. Estuarine, Coastal and Shelf Science 43: 617–625.

    Article  Google Scholar 

  54. Roznik, E. A. & R. A. Alford, 2012. Does waterproofing Thermochron iButton dataloggers influence temperature readings? Journal of Thermal Biology Elsevier 37: 260–264.

    Article  Google Scholar 

  55. Schurmann, H. & J. F. Steffensen, 1992. Lethal oxygen levels at different temperatures and the preferred temperature during hypoxia of the Atlantic cod, Gadus morhua L. Journal of Fish Biology 41: 927–934.

    Article  Google Scholar 

  56. Sih, A., J. Stamps, L. H. Yang, R. McElreath & M. Ramenofsky, 2010. Behavior as a key component of integrative biology in a human-altered world. Integrative and Comparative Biology 50: 934–944.

    Article  PubMed  Google Scholar 

  57. Sinclair, B. J., K. E. Marshall, M. A. Sewell, D. L. Levesque, C. S. Willett, S. Slotsbo, Y. Dong, C. D. G. Harley, D. J. Marshall, B. S. Helmuth & R. B. Huey, 2016. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecology Letters 19: 1372–1385.

    Article  PubMed  Google Scholar 

  58. Smith, T. J., K. G. Boto, S. D. Frusher & R. L. Giddins, 1991. Keystone species and mangrove forest dynamics: the influence of burrowing by crabs on soil nutrient status and forest productivity. Estuarine, Coastal and Shelf Science 33: 419–432.

    CAS  Article  Google Scholar 

  59. Stieglitz, T., P. Ridd & P. Müller, 2000. Passive irrigation and functional morphology of crustacean burrows in a tropical mangrove swamp. Hydrobiologia 421: 69–76.

    Article  Google Scholar 

  60. Stuart-Smith, R. D., G. J. Edgar, N. S. Barrett, S. J. Kininmonth & A. E. Bates, 2015. Thermal biases and vulnerability to warming in the world’ s marine fauna. Nature Nature Publishing Group 528: 1–17.

    Google Scholar 

  61. Sunday, J. M., A. E. Bates & N. K. Dulvy, 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proceedings Biological sciences/The Royal Society 278: 1823–1830.

    Article  Google Scholar 

  62. Sunday, J. M., A. E. Bates & N. K. Dulvy, 2012. Thermal tolerance and the global redistribution of animals. Nature Climate Change Nature Publishing Group 2: 686–690.

    Article  Google Scholar 

  63. Sunday, J. M., A. E. Bates, M. R. Kearney, R. K. Colwell, N. K. Dulvy, J. T. Longino & R. B. Huey, 2014. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America 111: 5610–5615.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Terblanche, J. S., A. A. Hoffmann, K. A. Mitchell, L. Rako, P. C. Roux & S. L. Chown, 2011. Ecologically relevant measures of tolerance to potentially lethal temperatures. 10: 3713–3725.

    Google Scholar 

  65. Tomlinson, P. B., 1986. The botany of mangroves. Cambridge Tropical Biology Series. 234: 373–374.

    Google Scholar 

  66. Verberk, W. C. E. P., F. Bartolini, D. J. Marshall, H.-O. Pörtner, J. S. Terblanche, C. R. White & F. Giomi, 2015. Can respiratory physiology predict thermal niches? Annals of the New York Academy of Sciences 179: 1–16.

    Google Scholar 

  67. Verberk, W. C. E. P., J. Overgaard, R. Ern, M. Bayley, T. Wang, L. Boardman & J. S. Terblanche, 2016. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comparative Biochemistry and Physiology -Part A: Molecular and Integrative Physiology The Authors 192: 64–78.

    CAS  Article  Google Scholar 

  68. Warren, J. H. & A. J. Underwood, 1986. Effects of burrowing crabs on the topography of mangrove swamps in New South Wales. Journal of Experimental Marine Biology and Ecology 102: 223–235.

    Article  Google Scholar 

  69. Williams, S. E., L. P. Shoo, J. L. Isaac, A. A. Hoffmann & G. Langham, 2008. Towards an Integrated Framework for Assessing the Vulnerability of Species to Climate Change. PLoS Biology 6: 6.

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by SP3-People (Marie Curie) IRSES Project CREC (No. 247514). FG was funded by the Intra-European Fellowship (ex Marie Curie) Number 221017, FP7. This work is based upon research supported by the South African Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation. MF and DD were supported also by DD baseline funding from King Abdullah University of Science and Technology (KAUST). We thank Jenny Marie Booth, Sara Cilio, Bruce Mostert, Laura Sbaragli and Irene Ortolani for fundamental help during Kenyan and South African laboratory and fieldwork.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marco Fusi.

Ethics declarations

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. Furthermore, all procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Guest editors: K. W. Krauss, I. C. Feller, D. A. Friess, R. R. Lewis III / Causes and Consequences of Mangrove Ecosystem Responses to an Ever-Changing Climate

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fusi, M., Babbini, S., Giomi, F. et al. Thermal sensitivity of the crab Neosarmatium africanum in tropical and temperate mangroves on the east coast of Africa. Hydrobiologia 803, 251–263 (2017). https://doi.org/10.1007/s10750-017-3151-1

Download citation

Keywords

  • Sesarmidae
  • Decapods
  • Tropical and temperate wetlands
  • Oxygen consumption
  • Haemolymph
  • Physiology
  • Populations