Advertisement

Hydrobiologia

, Volume 795, Issue 1, pp 1–22 | Cite as

Non-native fish species in Hungarian waters: historical overview, potential sources and recent trends in their distribution

  • Péter TakácsEmail author
  • István Czeglédi
  • Árpád Ferincz
  • Péter Sály
  • András Specziár
  • Zoltán Vitál
  • András Weiperth
  • Tibor Erős
Review Paper

Abstract

Due to its central position in the Danube basin and its considerable fishery sector, Hungary plays a key role in the spread of non-native fish species in Europe. Nevertheless, the status of non-native fish has not yet been reviewed for Hungary. Therefore, our aims were (1) to give a comprehensive historical overview regarding the occurrence of non-native fish species of Hungary, (2) to show their recent distribution patterns using GIS, and (3) to evaluate the importance of the possible drivers in their spread. Literature data show 59 non-native fish species from Hungary. The appearance of new species—mostly due to aquarium fish releases—shows an accelerating trend nowadays. Although non-native fish have appeared at 78.7% of the studied 767 sites during our recent countrywide survey, their distribution was uneven. Lowland streams, lowland rivers, and the River Danube were the most affected by non-native fish, particularly the gibel carp, topmouth gudgeon and pumpkinseed escaped from fish/angling ponds, and the recent invasion of Ponto-Caspian gobies. Our results indicated that in order to reduce the effects and intensity of further invasions, more rigorous control of aquarium trade, angling pond stockings, and inter-watershed fish transports are necessary.

Keywords

Invasion Invasive species Fisheries Aquarium trade Ecological risks Carpathian basin 

Notes

Acknowledgements

Fish faunistic surveys were made within the frame of the following projects: OTKA CNK80140, OTKA K104279, OTKA PD115801 and a KEHOP2015 project of the General Directorate of Water Management. We would like to express our thanks to colleagues at the General Directorate of Water Management, but Gy. I. Tóth and T.A. Zagyva for their help in several phases of the work. Data analysis was supported by the GINOP 2.3.2-15-2016-00004 project. Árpád Ferincz was supported by the Bolyai Fellowship of the Hungarian Academy of Sciences.

Supplementary material

10750_2017_3147_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 20 kb)
10750_2017_3147_MOESM2_ESM.docx (24 kb)
Supplementary material 2 (DOCX 24 kb)

References

  1. Andrews, C., 1990. The ornamental fish trade and fish conservation. Journal of Fish Biology 37: 53–59.CrossRefGoogle Scholar
  2. Antalfi, A. & I. Tölg, 1972. Növényevő halak. Mezőgazdasági Kiadó, Budapest. (in Hungarian).Google Scholar
  3. Balon, E. K., 1995. Origin and domestication of the wild carp, Cyprinus carpio: from Roman gourmets to the swimming flowers. Aquaculture 129: 3–48.CrossRefGoogle Scholar
  4. Bănăduc, D., S. Rey, T. Trichkova, M. Lenhardt, A. Curtean-Bănăduc, 2016. The Lower Danube River–Danube Delta–North West Black Sea: a pivotal area of major interest for the past, present and future of its fish fauna—a short review. Science of the Total Environment 545: 137–151.PubMedCrossRefGoogle Scholar
  5. Békefi, E., & L. Váradi, 2007. Multifunctional pond fish farms in Hungary. Aquaculture International 15(3-4): 227–233.CrossRefGoogle Scholar
  6. Beisel J. N, P. M. C. Peltre, N. Kaldonski, A. Hermann, & S. Muller, 2017. Spatiotemporal trends for exotic species in French freshwater ecosystems: where are we now? Hydrobiologia 785(1): 293–305.CrossRefGoogle Scholar
  7. Bíró, P., 1971. Egy új gébféle (Neogobius fluviatilis Pallas) a Balatonból. Halászat 17: 22–23. (in Hungarian).Google Scholar
  8. Bíró, P., 1993. A Balaton halállományának változásai és jelenlegi helyzete. Halászat 86: 22–24. (in Hungarian).Google Scholar
  9. Bódis, E., P. Borza, I. Potyó, A. Weiperth, M. Puky, G. Guti, 2012. Invasive mollusc, macrocrustacea, fish and reptile species along the Hungarian Danube section and some connected waters. Acta Zoologica Academiae Scientiarum Hungaricae 58 (Supplement 1): 29–45.Google Scholar
  10. Borza, P., B. Csányi, T. Huber, P. Leitner, M. Paunović, N. Remund, J. Szekeres & W. Graf, 2015. Longitudinal distributional patterns of Peracarida (Crustacea, Malacostraca) in the River Danube. Fundamental and Applied Limnology/Archiv für Hydrobiologie 187: 113–126.CrossRefGoogle Scholar
  11. Botta, I. 1985. 88 színes oldala hazai halainkról. Mezőgazdasági Kiadó. Budapest (in Hungarian).Google Scholar
  12. Botta, I., K. Keresztessy & I. Neményi, 1984. Halfaunisztikai és ökológiai tapasztalatok természetes vizeinkben. Állattani Közlemények 71: 39–50. (in Hungarian).Google Scholar
  13. Bright, C., 1999. Invasive species: pathogens of globalization. Foreign Policy 116: 50–64.CrossRefGoogle Scholar
  14. Britton, J. R., & M. L. Orsi, 2012. Non-native fish in aquaculture and sport fishing in Brazil: economic benefits versus risks to fish diversity in the upper River Paraná Basin. Reviews in Fish Biology and Fisheries 22(3): 555–565.CrossRefGoogle Scholar
  15. Canonico, G. C., A. Arthington, J.K. McCrary & M.L. Thieme, 2005. The effects of introduced tilapias on native biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 15(5): 463–483.CrossRefGoogle Scholar
  16. Casal, C.M.V. 2006. Global documentation of fish introductions: the growing crisis and recommendations for action. Biological Invasions 8(1): 3–11.CrossRefGoogle Scholar
  17. Copp, G. H., P. G. Bianco, N. G. Bogutskaya, T. Erős, I. Falka, M. T. Ferreira, M. G. Fox, J. Freyhof, R. E. Gozlan, J. Grabowska, V. Kovač, R. Moreno-Amich, A. M. Naseka, M. Peňaz, M. Povž, M. Przybylski, M. Robillard, I. C. Russell, S. Staknas, S. Šumer, A. Vila-Gispert & C. Wiesner, 2005. To be, or not to be, a non-native freshwater fish? Journal of Applied Ichthyology 21: 242–262.CrossRefGoogle Scholar
  18. Daga, V. S., T. Debona, V. Abilhoa, É. A. Gubiani, & J. R. S. Vitule, 2016. Non-native fish invasions of a Neotropical ecoregion with high endemism: a review of the Iguaçu River. Aquatic Invasions 11(2): 209–223.CrossRefGoogle Scholar
  19. DeGrandchamp, K. L., J. E. Garvey & R. E. Colombo, 2008. Movement and habitat selection by invasive Asian carps in a large river. Transactions of the American Fisheries Society 137: 45–56.CrossRefGoogle Scholar
  20. Didham, R. K., J. M. Tylianakis, N. J. Gemmell, T. A. Rand & R. M. Ewers, 2007. Interactive effects of habitat modification and species invasion on native species decline. Trends in Ecology & Evolution 22: 489–496.CrossRefGoogle Scholar
  21. Dobrai L., 1974. A magyar halászat nemzetközi kapcsolatai I. Közreműködünk a FAO munkájában. Halászat 67(4): 103–104. (in Hungarian).Google Scholar
  22. Dobrai, L., 1979. A magyar halászat nemzetközi kapcsolatai. Halászat 72(2): 33–34. (in Hungarian).Google Scholar
  23. Ellender, B. R. & O. L. F. Weyl, 2014. A review of current knowledge, risk and ecological impacts associated with non-native freshwater fish introductions in South Africa. Aquatic Invasions 9: 117–132.CrossRefGoogle Scholar
  24. Ehlers, M., M. Möller, S. Marangon, & N. Ferre, 2003. The use of geographic information system (GIS) in the frame of the contingency plan implemented during the 1999-2001 avian influenza (AI) epidemic in Italy. Avian Diseases, 47: 1010–1014.PubMedCrossRefGoogle Scholar
  25. Elvira, B. & A. Almodóvar, 2001. Freshwater fish introductions in Spain: facts and figures at the beginning of the 21st century. Journal of Fish Biology 59: 323–331.CrossRefGoogle Scholar
  26. Erős, T., 2007. Partitioning the diversity of riverine fish: the roles of habitat types and non-native species. Freshwater Biology 52: 1400–1415.CrossRefGoogle Scholar
  27. Erős, T., & G. Guti, 1997. Kessler-géb (Neogobius kessleri Günther, 1861) a Duna magyarországi szakaszán - új halfaj előfordulásának igazolása. Halászat 90: 83–84. (in Hungarian with English summary).Google Scholar
  28. Erős, T., A. Sevcsik & B. Tóth, 2005. Abundance and night-time habitat use patterns of Ponto-Caspian gobiid species (Pisces, Gobiidae) in the littoral zone of the River Danube, Hungary. Journal of Applied Ichthyology 21: 350–357.CrossRefGoogle Scholar
  29. Erős, T., P. Takács, P. Sály, A. Specziár, Á. I. György & P. Bíró, 2008. Az amurgéb (Perccottus glenii Dybowski, 1877) megjelenése a Balaton vízgyűjtőjén. Halászat 101: 75–77 (in Hungarian with English summary).Google Scholar
  30. Erős, T., P. Sály, P. Takács, A. Specziár & P. Bíró, 2012. Temporal variability in the spatial and environmental determinants of functional metacommunity organization–stream fish in a human‐modified landscape. Freshwater Biology 57: 1914–1928.CrossRefGoogle Scholar
  31. Feledi, T. G, Gyalog, B. Kucska, M. Fehér, Gy. Borbély, M. Jancsó, L. Stündl, & A. Rónyai, 2011. Újabb ígéretes fajok az európai akvakultúrában: a barramundi (Lates calcarifer Bloch, 1790) és a vörös árnyékhal (Sciaenops ocellatus L., 1766). Halászat 104(3-4): 75–80. (in Hungarian).Google Scholar
  32. Ferincz, Á., Á.Staszny, A. Weiperth, P. Takács, Urbányi, B. Vilizzi, L., G. Paulovits, & G. H. Copp, 2016a. Risk assessment of non-native fishes in the catchment of the largest Central-European shallow lake (Lake Balaton, Hungary). Hydrobiologia 1–13.Google Scholar
  33. Ferincz, Á., Z. Horváth, Á. Staszny, A. Ács, N. Kováts, C. F. Vad, G. Paulovits, 2016b. Desiccation frequency drives local invasions of non-native gibel carp (Carassius gibelio) in the catchment of a large, shallow lake (Lake Balaton, Hungary). Fisheries Research 173: 37–44.CrossRefGoogle Scholar
  34. Ficetola, G. F., W. Thuiller & C. Miaud, 2007. Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog. Diversity and Distributions 13: 476–485.CrossRefGoogle Scholar
  35. García-Berthou, E., C. Alcaraz, Q. Pou-Rovira, L. Zamora, G. Coenders & C. Feo, 2005. Introduction pathways and establishment rates of invasive aquatic species in Europe. Canadian Journal of Fisheries and Aquatic Sciences 62: 453–463.CrossRefGoogle Scholar
  36. Gollasch, S. & S. Nehring, 2006. National checklist for aquatic alien species in Germany. Aquatic Invasions 1: 245–269.CrossRefGoogle Scholar
  37. Gotelli, N. J. & G. L. Entsminger, 2001. EcoSim: Null models software for ecology.Google Scholar
  38. Gozlan, R. E. 2008. Introduction of non-native freshwater fish: is it all bad? Fish and Fisheries 9: 106–115.CrossRefGoogle Scholar
  39. Gozlan, R. E., J. R. Britton, I. Cowx & G. H. Copp, 2010. Current knowledge on non-native freshwater fish introductions. Journal of Fish Biology 76: 751–786.CrossRefGoogle Scholar
  40. Grabowska, J., J. Kotusz & A. Witkowski, 2010. Alien invasive fish species in Polish waters: an overview. Folia Zoologica 59: 73–85.Google Scholar
  41. Gurevitch, J. & D. K. Padilla, 2004. Are invasive species a major cause of extinctions? Trends in Ecology & Evolution 19: 470–474.CrossRefGoogle Scholar
  42. Guti, G., 1999. Syrman-géb (Neogobius syrman) a Duna magyarországi szakaszán. Halászat 92: 30–33. (in Hungarian).Google Scholar
  43. Guti, G., 2014. A Szirman géb (Ponticola syrman Nordmann, 1840) magyarországi előfordulásáról beszámoló korábbi közlemény felülvizsgálata. Pisces Hungarici 8: 101–105 (in Hungarian with English summary).Google Scholar
  44. Guti, G., T. Erős, Z. Szalóky & B. Tóth, 2003. A kerekfejű géb, a Neogobius melanostomus (Pallas, 1811) megjelenése a Duna magyarországi szakaszán. Halászat 96: 116–119. (in Hungarian).Google Scholar
  45. Halasi-Kovács, B. & Á. Harka, 2012. Hány halfaj él Magyarországon? A magyar halfauna zoogeográfiai és taxonómiai áttekintése, értékelése. Pisces Hungarici 6: 5–24. (in Hungarian with English summary).Google Scholar
  46. Halasi-Kovács, B., L. Antal & S. A. Nagy, 2011. First record of a Ponto-Caspian Knipowitschia species (Gobiidae) in the Carpathian basin, Hungary. Cybium 35: 257–258.Google Scholar
  47. Halasi-Kovács, B., N. Puskás & I. Szűcs, 2012. A magyarországi halastavi vízgazdálkodás jellemzői, komplex természeti-gazdasági-társadalmi jelentősége, valamint a fenntartható gazdálkodást veszélyeztető problémák értékelése. Halászatfejlesztés 34 - Fisheries and Aquaculture Development 34: 78–95. (in Hungarian).Google Scholar
  48. Harka, Á., 1998. Magyarország faunájának új halfaja: az amurgéb (Perccottus glehni Dybowski, 1877). Halászat 91: 32–33. (in Hungarian).Google Scholar
  49. Harka, Á & P. Bíró, 2007. New patterns in Danubian distribution of Ponto-Caspian gobies—a result of global climate change and/or canalization? Electronic Journal of Ichthyology 3: 1–14.Google Scholar
  50. Harka, Á. & Z. Sallai, 2004. Magyarország halfaunája. Nimfea Természetvédelmi Egyesület, Szarvas, Budapest. (in Hungarian).Google Scholar
  51. Harka, Á. & Zs. Szepesi, 2010. Hány pikófaj (Gasterosteus sp.) él Magyarországon? Pisces Hungarici 4: 101–104. (in Hungarian with English summary).Google Scholar
  52. Harka, Á., Z. Sallai & J. Koščo, 2003. Az amurgéb (Perccottus glenii) terjedése a Tisza vízrendszerében. A Puszta 18: 49–56. (in Hungarian).Google Scholar
  53. Harka, Á., K. Nyeste, L. Nagy & T. Erős, 2014. Bíborsügér (Hemichromis guttatus Günther, 1862) a Hévízi-tó termálvizében. Pisces Hungarici 8: 29–34. (in Hungarian with English summary).Google Scholar
  54. Hewitt, G. M., 1999. Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society 68: 87–112.CrossRefGoogle Scholar
  55. Holčík, J. 1991. Fish introductions in Europe with particular reference to its central and eastern part. Canadian Journal of Fisheries and Aquatic Sciences 48: 13–23.CrossRefGoogle Scholar
  56. Hughes, J. D., 2003. Europe as consumer of exotic biodiversity: Greek and Roman times. Landscape Research 28: 21–31.CrossRefGoogle Scholar
  57. Hickley, P., & S. Chare, 2004. Fisheries for non‐native species in England and Wales: angling or the environment? Fisheries Management and Ecology 11.3‐4: 203–212.CrossRefGoogle Scholar
  58. Hinterthuer, A. 2012. The explosive spread of Asian Carp can the Great Lakes be protected? Does it matter? BioScience, 62(3): 220–224.CrossRefGoogle Scholar
  59. Irons, K. S., G. G. Sass, M. A. McClelland, & T. M., O’Hara, 2011. Bigheaded carp invasion of the La Grange Reach of the Illinois River: insights from the long term resource monitoring program. In American Fisheries Society Symposium (No. 74).Google Scholar
  60. Jakovlić, I., M. Piria, N. Šprem, T. Tomljanović, D. Matulić & T. Treer, 2015. Distribution, abundance and condition of invasive Ponto‐Caspian gobies Ponticola kessleri (Günther, 1861), Neogobius fluviatilis (Pallas, 1814), and Neogobius melanostomus (Pallas, 1814) in the Sava River basin, Croatia. Journal of Applied Ichthyology 31: 888–894.CrossRefGoogle Scholar
  61. Joyce, K. 2009. “To me it’s just another tool to help understand the evidence”: public health decision-makers’ perceptions of the value of geographical information systems (GIS). Health & Place, 15(3): 831–840.CrossRefGoogle Scholar
  62. Keller, R. P., J. M. Drake, M. B. Drew & D. M. Lodge, 2011. Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network. Diversity and Distributions 17: 93–102.CrossRefGoogle Scholar
  63. Klotz, W., F. W. Miesen, S. Hüllen & F. Herder, 2013. Two Asian fresh water shrimp species found in a thermally polluted stream system in North Rhine-Westphalia, Germany. Aquatic Invasions 8: 333–339.CrossRefGoogle Scholar
  64. Koščo, J. & P. Balázs, 2000. Új egzotikus faj (Pseudotropheus tropheops) az Ipoly vízrendszerében, valamint néhány megjegyzés egyes akváriumi halak vadvizekbe történő telepítéséről. A Puszta 17: 45. (in Hungarian).Google Scholar
  65. Koščo, J., L. Košuthová, P. Košuth & L. Pekárik, 2010. Non-native fish species in Slovak waters: origins and present status. Biologia 65: 1057–1063.CrossRefGoogle Scholar
  66. Kottelat, M. & J. Freyhof, 2007. Handbook of European Freshwater Fishes. Publications Kottelat, Cornol.Google Scholar
  67. Kriesch, J., 1872. Egy új hal-faj [Gobius rubromaculatus]. Mathematikai és természettudományi közlemények 10: 221–232. (in Hungarian).Google Scholar
  68. Lee I. I., D. A. Reusser, J. D. Olden, S. S. Smith, J. Graham, V. Burkett, J. S. Dukes, R. J. Piorkowski, & J. S. McPhedran McPhedran, 2008. Integrated monitoring and information systems for managing aquatic invasive species in a changing climate. Conservation Biology 22(3): 575–584.PubMedCrossRefGoogle Scholar
  69. Leprieur, F., O., Beauchard, S. Blanchet, T. Oberdorff, & S. Brosse, 2008. Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS Biology 6(2): e28.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lovász, G., 2012. Water temperatures of the Danube and Tisza Rivers in Hungary. Hungarian Geographical Bulletin 61: 317–325.Google Scholar
  71. Lusk, S., V. Lusková & L. Hanel, 2010. Alien fish species in the Czech Republic and their impact on the native fish fauna. Folia Zoologica 59: 57–72.Google Scholar
  72. McColl, K. A., B. D. Cooke, & A. Sunarto, 2014. Viral biocontrol of invasive vertebrates: Lessons from the past applied to cyprinid herpesvirus-3 and carp (Cyprinus carpio) control in Australia. Biological Control 72: 109–117.CrossRefGoogle Scholar
  73. Magalhaes, A. L. B. D., & C. M. Jacobi, 2013. Invasion risks posed by ornamental freshwater fish trade to southeastern Brazilian rivers. Neotropical Ichthyology 11(2): 433–441.CrossRefGoogle Scholar
  74. Magalhães, A. L. B., & J. R. S. Vitule, 2013. Aquarium industry threatens biodiversity. Science 341: 457.PubMedCrossRefGoogle Scholar
  75. Manchester, S. J. & J. M. Bullock, 2000. The impacts of non-native species on UK biodiversity and the effectiveness of control. Journal of Applied Ecology 37: 845–864.CrossRefGoogle Scholar
  76. Martonné Erdős, K., 2004. Magyarország természeti földrajza I, Debreceni Egyetem Kossuth Egyetemi Kiadója, Debrecen. (in Hungarian).Google Scholar
  77. Márián, T., Z. Krasznai & J. Oláh, 1986. Characteristic karyological, biochemical and morphological markers of silver carp (Hypophthalmichthys molitrix Val.), bighead carp (Aristichthys nobilis Rich.) and their hybrids. Aquacultura Hungarica 5: 15–30.Google Scholar
  78. Mckinney, M. L. & J. L. Lockwood, 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14: 450–453.CrossRefGoogle Scholar
  79. Mihályfi, F., 1939. A szúnyog elleni védekezés entomológiai előkészítése Hévízen. Állattani Közlemények 36: 107–117. (in Hungarian).Google Scholar
  80. Mitas, L. & H. Mitasova, 1999. Spatial interpolation. Geographical Information Systems: Principles, Techniques, Management and Applications 1: 481–492.Google Scholar
  81. Naylor, R., S. L. Williams & D. R. Strong, 2001. Aquaculture—a gateway for exotic species. Science 294: 1655–1656.PubMedCrossRefGoogle Scholar
  82. Nováky, B. & G. Bálint, 2013. Shifts and modification of the hydrological regime under climate change in Hungary. In Bharat raj Singh (ed), Realities, impacts over ice cap, sea level and risks. InTech Open Access Publisher, Rijeka: 163–190.Google Scholar
  83. Olden, J. D. & T. P. Rooney, 2006. On defining and quantifying biotic homogenization. Global Ecology and Biogeography 15: 113–120.CrossRefGoogle Scholar
  84. Ortega, J. C., H. F. Júlio Jr, L. C. Gomes, & A. A. Agostinho, 2015. Fish farming as the main driver of fish introductions in Neotropical reservoirs. Hydrobiologia 746(1): 147–158.CrossRefGoogle Scholar
  85. Panov, V. E., B. Alexandrov, K. Arbačiauskas, R. Binimelis, G. H. Copp, M. Grabowski & V. Semenchenko, 2009. Assessing the risks of aquatic species invasions via European inland waterways: the concepts and environmental indicators. Integrated Environmental Assessment and Management 5: 110–126.PubMedCrossRefGoogle Scholar
  86. Paunović, M., B. Csányi, P. Simonović & K. Zorić, 2015. Invasive alien species in the Danube. In Liska, I. (ed), The Danube River Basin. Springer, Berlin: 389–409.CrossRefGoogle Scholar
  87. Pelicice, F. M., J. R. S. Vitule, D. P. Lima Jr., M. L. Orsi, & A. A. Agostinho, 2014. A serious new threat to Brazilian freshwater ecosystems: the naturalization of nonnative fish by decree. Conservation Letters 7: 55–60.CrossRefGoogle Scholar
  88. Perry-Gal, L., A. Erlich, A. Gilboa & G. Bar-Oz, 2015. Earliest economic exploitation of chicken outside East Asia: evidence from the Hellenistic Southern Levant. Proceedings of the National Academy of Sciences 112: 9849–9854.CrossRefGoogle Scholar
  89. Pimentel, D., R. Zuniga & D. Morrison, 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52: 273–288.CrossRefGoogle Scholar
  90. Pintér, K., 1980. Exotic fishes in Hungarian Waters: their importance in fishery utilization of natural water bodies and fish farming. Fisheries Management 11: 163–167.Google Scholar
  91. Pintér, K., 1989. Magyarország halai. Akadémiai Kiadó, Budapest. (in Hungarian).Google Scholar
  92. Piria, M., G. Jakšić, I. Jakovlić & T. Treer, 2016. Dietary habits of invasive Ponto-Caspian gobies in the Croatian part of the Danube River basin and their potential impact on benthic fish communities. Science of the Total Environment 540: 386–395.PubMedCrossRefGoogle Scholar
  93. Povž, M. & S. Šumer, 2005. A brief review of non-native freshwater fishes in Slovenia. Journal of Applied Ichthyology 21: 316–318.CrossRefGoogle Scholar
  94. QGIS Development Team, 2016. QGIS Geographic Information System. Open Source Geospatial Foundation Project.Google Scholar
  95. Rabitsch, W., N. Milasowszky, S. Nehring, C. Wiesner, C. Wolter, & F. Essl, 2013. The times are changing: temporal shifts in patterns of fish invasions in central European fresh waters. Journal of Fish Biology 82(1): 17–33.PubMedCrossRefGoogle Scholar
  96. Rahel, F. J. & J. D. Olden, 2008. Assessing the effects of climate change on aquatic invasive species. Conservation Biology 22: 521–533.PubMedCrossRefGoogle Scholar
  97. Reshetnikov, A. N. 2013. Spatio-temporal dynamics of the expansion of rotan Perccottus glenii from West-Ukrainian centre of distribution and consequences for European freshwater ecosystems. Aquatic Invasions 8: 193–206.CrossRefGoogle Scholar
  98. Reshetnikov, A. N. & G. F. Ficetola, 2011. Potential range of the invasive fish rotan (Perccottus glenii) in the Holarctic. Biological Invasions 13: 2967–2980.CrossRefGoogle Scholar
  99. Reshetnikov, A. N. & A. S. Karyagina, 2015. Further evidence of naturalisation of the invasive fish Perccottus glenii Dybowski, 1877 (Perciformes: Odontobutidae) in Germany and necessity of urgent management response. Acta Zoologica Bulgarica 67: 553–556.Google Scholar
  100. Roche, K. F., M. Janač & P. Jurajda, 2013. A review of Gobiid expansion along the Danube-Rhine corridor–geopolitical change as a driver for invasion. Knowledge and Management of Aquatic Ecosystems 411: 01.CrossRefGoogle Scholar
  101. Sály, P., 2007. The system of faunacomponents conception and its application to qualify the degree of naturalness of fish assemblages. Pisces Hungarici 1: 93–101. (in Hungarian with English summary).Google Scholar
  102. Sály, P., T. Erős, P. Takács, Cs. Bereczki & P. Bíró, 2008. Biological homogenization or differentiation? Changes of fish assemblage diversity in small watercourses of Lake Balaton. Hidrológiai Közlöny 88: 162–164. (in Hungarian with English summary).Google Scholar
  103. Sály, P., T. Erős, P. Takács, A. Specziár, I. Kiss & P. Bíró, 2009. Assemblage level monitoring of stream fishes: the relative efficiency of single-pass vs. double-pass electrofishing. Fisheries Research 99: 226–233.CrossRefGoogle Scholar
  104. Sály, P., P. Takács, I. Kiss, P. Bíró & T. Erős, 2012. Effect of local- and landscape-scale factors on the distribution of non-native fishes in small watercourses of the catchment area of Lake Balaton (Hungary). Állattani Közlemények 97: 181–199. (in Hungarian with an English summary).Google Scholar
  105. Schlosser, I. J., 1982. Fish community structure and function along two habitat gradients in a headwater stream. Ecological Monographs 52: 395–414.CrossRefGoogle Scholar
  106. Specziár, A., 2004. Life history pattern and feeding ecology of the introduced eastern mosquitofish, Gambusia holbrooki, in a thermal spa under temperate climate, of Lake Heviz, Hungary. Hydrobiologia 522: 249–260.CrossRefGoogle Scholar
  107. Specziár, A. & T. Erős, 2015. Freshwater resources and fisheries in Hungary In: Craig, J. F. (ed) Freshwater Fisheries Ecology. Wiley-Blackwell Publishing Ltd., Oxford: 196–200.CrossRefGoogle Scholar
  108. Sterbetz, I., 1957. Tüskés Pikó a Dunában. Halászat 4: 75. (in Hungarian).Google Scholar
  109. Szalóky, Z., V. Bammer, Á. I. György, L. Pehlivanov, M. Schabuss, H. Zornig & T. Eros, 2015. Offshore distribution of invasive gobies (Pisces: Gobiidae) along the longitudinal profile of the Danube River. Fundamental and Applied Limnology 187: 127–133.CrossRefGoogle Scholar
  110. Szepesi, Zs. & Á. Harka, 2015. Szúnyogirtó fogaspontyok (Gambusia holbrooki) megtelepedése a Zagyvában. Halászat 108: 11. (in Hungarian with English summary).Google Scholar
  111. Szolnoky, C. & L. Raum, 1991. Regulation of the thermal loading by Paks Nuclear Power Station. Periodica Polytechnica Civil Engineering 35: 41–50.Google Scholar
  112. Tahy, B., 1975. A magyar halászat kapcsolatai. Csehszlovákia. Halászat. 68(2): 37. (in Hungarian).Google Scholar
  113. Takács, P. & Z. Vitál, 2012. Amurgéb (Perccottus glenii Dybowski, 1877) a Duna mentén. Halászat 105: 16. (in Hungarian with English summary).Google Scholar
  114. Takács, P., Cs. Bereczki, P. Sály, A. Móra & P. Bíró, 2007. A Balatonba torkolló kisvízfolyások halfaunisztikai vizsgálata. Hidrológiai Közlöny 87: 175–177. (in Hungarian with English summary).Google Scholar
  115. Takács, P., G. Maász, Z. Vitál & Á. Harka, 2015a. Akváriumi halak a Hévíz-lefolyó termálvizében Pisces Hungarici 9: 59–64. (in Hungarian with English summary).Google Scholar
  116. Takács, P., I. Czeglédi & Á. Ferincz, 2015b. Amurgéb (Perccottus glenii) a Dráva vízgyűjtőjéről - Halászat 108: 15. (in Hungarian with English summary).Google Scholar
  117. Tatár, S., B. Bajomi, A. Specziár, B. Tóth, M. M. Trenovszki, B. Urbányi, B. Csányi, J. Szekeres & T. Müller, 2016. Habitat establishment, captive breeding and conservation translocation to save threatened populations of the Vulnerable European mudminnow Umbra krameri. Oryx 1–12..Google Scholar
  118. Taylor, A., G. Rigby, S. Gollasch, M. Voigt, G. Hallegraef, T. McCollin & A. Jelmert, 2002. Preventive treatment and control techniques for ballast water. In Leppäkoski, E., S. Gollasch & S. Olenin, (eds), Invasive Aquatic Species of Europe. Distribution, Impacts and Management. Springer, Netherlands: 484–507.Google Scholar
  119. Thomas, A. & M. Chovet, 2013. De´couverte de l’Anodonte chinoise Sinanodonta woodiana (Lea, 1834) (Mollusca, Bivalvia, Unionidae) dans le canal d’Orle´ans (Loiret, France). MalaCo 9: 463–466 (in French).Google Scholar
  120. Thomsen, M., T. Wernberg., J. Olden, J. E. Byers, J. Bruno, B. Silliman & D. Schiel, 2014. Forty years of experiments on aquatic invasive species: are study biases limiting our understanding of impacts? NeoBiota 22: 1.Google Scholar
  121. URL2: http://www.fao.org/fishery/introsp/472/en (date of access: 22. 02. 2016).
  122. Xiong, W., X.Sui, S. H. Liang, & Y. Chen, 2015. Non-native freshwater fish species in China. Reviews in Fish Biology and Fisheries 25(4): 651–687.CrossRefGoogle Scholar
  123. Vitule, J. R. S., C. A. Freire, & D. Simberloff, 2009. Introduction of non-native freshwater fish can certainly be bad. Fish and Fisheries 10: 98–108.CrossRefGoogle Scholar
  124. Vutskits, Gy. 1912. Az amerikai származású naphal meghonosodása a Balatonban. Természettudományi közlöny 44: 467–468. (in Hungarian)Google Scholar
  125. Vutskits, Gy., 1913. A Pisztrángsügér és a naphal meghonosodása a Drávában-Természettudományi Közlemények 748–749. (in Hungarian).Google Scholar
  126. Weiperth, A., Á. Staszny & Á. Ferincz, 2013. Idegenhonos halfajok megjelenése és terjedése a Duna magyarországi szakaszán – Történeti áttekintés. Pisces Hungarici 7: 103–112. (in Hungarian with English summary).Google Scholar
  127. Weiperth, A., B. Csányi, Á. I. György, J. Szekeres, T. Friedrich, & Z. Szalóky, 2014. Observation of the non-native sturgeon hybrid (Acipenser naccarii x Acipenser baerii) in the Hungarian section of River Danube. Pisces Hungarici 8: 111. (in Hungarian with English summary).Google Scholar
  128. Weiperth, A., B. Csányi, B. Gál, Á. I. György, Z. Szalóky, J. Szekeres, B. Tóth & † M. Puky, 2015. Egzotikus rák-, hal- és kétéltűfajok a Budapest környéki víztestekben. Pisces Hungarici 9: 65–70. (in Hungarian with English summary).Google Scholar
  129. Wieseinger, M., 1975. Akvarisztika. Gondolat Kiadó, Budapest: 327. (in Hungarian).Google Scholar
  130. Welcomme, R. L. (ed.), 1988. International introductions of inland aquatic species. FAO Fisheries Technical Paper 294. FAO, Rome.Google Scholar
  131. Welcomme, R. L. 1992. A history of international introductions of inland aquatic species. ICES Marine Science Symposium 194: 3–14.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Péter Takács
    • 1
    Email author
  • István Czeglédi
    • 1
  • Árpád Ferincz
    • 2
  • Péter Sály
    • 1
    • 3
  • András Specziár
    • 1
  • Zoltán Vitál
    • 1
  • András Weiperth
    • 4
  • Tibor Erős
    • 1
  1. 1.Balaton Limnological InstituteMTA Centre for Ecological ResearchTihanyHungary
  2. 2.Department of AquacultureSzent István UniversityGödöllőHungary
  3. 3.Department of HydrobiologyUniversity of PécsPécsHungary
  4. 4.Danube Research InstituteMTA Centre for Ecological ResearchBudapestHungary

Personalised recommendations