Skip to main content

Advertisement

Log in

Non-native fish species in Hungarian waters: historical overview, potential sources and recent trends in their distribution

  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Due to its central position in the Danube basin and its considerable fishery sector, Hungary plays a key role in the spread of non-native fish species in Europe. Nevertheless, the status of non-native fish has not yet been reviewed for Hungary. Therefore, our aims were (1) to give a comprehensive historical overview regarding the occurrence of non-native fish species of Hungary, (2) to show their recent distribution patterns using GIS, and (3) to evaluate the importance of the possible drivers in their spread. Literature data show 59 non-native fish species from Hungary. The appearance of new species—mostly due to aquarium fish releases—shows an accelerating trend nowadays. Although non-native fish have appeared at 78.7% of the studied 767 sites during our recent countrywide survey, their distribution was uneven. Lowland streams, lowland rivers, and the River Danube were the most affected by non-native fish, particularly the gibel carp, topmouth gudgeon and pumpkinseed escaped from fish/angling ponds, and the recent invasion of Ponto-Caspian gobies. Our results indicated that in order to reduce the effects and intensity of further invasions, more rigorous control of aquarium trade, angling pond stockings, and inter-watershed fish transports are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrews, C., 1990. The ornamental fish trade and fish conservation. Journal of Fish Biology 37: 53–59.

    Article  Google Scholar 

  • Antalfi, A. & I. Tölg, 1972. Növényevő halak. Mezőgazdasági Kiadó, Budapest. (in Hungarian).

    Google Scholar 

  • Balon, E. K., 1995. Origin and domestication of the wild carp, Cyprinus carpio: from Roman gourmets to the swimming flowers. Aquaculture 129: 3–48.

    Article  Google Scholar 

  • Bănăduc, D., S. Rey, T. Trichkova, M. Lenhardt, A. Curtean-Bănăduc, 2016. The Lower Danube River–Danube Delta–North West Black Sea: a pivotal area of major interest for the past, present and future of its fish fauna—a short review. Science of the Total Environment 545: 137–151.

    Article  PubMed  CAS  Google Scholar 

  • Békefi, E., & L. Váradi, 2007. Multifunctional pond fish farms in Hungary. Aquaculture International 15(3-4): 227–233.

    Article  Google Scholar 

  • Beisel J. N, P. M. C. Peltre, N. Kaldonski, A. Hermann, & S. Muller, 2017. Spatiotemporal trends for exotic species in French freshwater ecosystems: where are we now? Hydrobiologia 785(1): 293–305.

    Article  Google Scholar 

  • Bíró, P., 1971. Egy új gébféle (Neogobius fluviatilis Pallas) a Balatonból. Halászat 17: 22–23. (in Hungarian).

    Google Scholar 

  • Bíró, P., 1993. A Balaton halállományának változásai és jelenlegi helyzete. Halászat 86: 22–24. (in Hungarian).

    Google Scholar 

  • Bódis, E., P. Borza, I. Potyó, A. Weiperth, M. Puky, G. Guti, 2012. Invasive mollusc, macrocrustacea, fish and reptile species along the Hungarian Danube section and some connected waters. Acta Zoologica Academiae Scientiarum Hungaricae 58 (Supplement 1): 29–45.

    Google Scholar 

  • Borza, P., B. Csányi, T. Huber, P. Leitner, M. Paunović, N. Remund, J. Szekeres & W. Graf, 2015. Longitudinal distributional patterns of Peracarida (Crustacea, Malacostraca) in the River Danube. Fundamental and Applied Limnology/Archiv für Hydrobiologie 187: 113–126.

    Article  Google Scholar 

  • Botta, I. 1985. 88 színes oldala hazai halainkról. Mezőgazdasági Kiadó. Budapest (in Hungarian).

    Google Scholar 

  • Botta, I., K. Keresztessy & I. Neményi, 1984. Halfaunisztikai és ökológiai tapasztalatok természetes vizeinkben. Állattani Közlemények 71: 39–50. (in Hungarian).

    Google Scholar 

  • Bright, C., 1999. Invasive species: pathogens of globalization. Foreign Policy 116: 50–64.

    Article  Google Scholar 

  • Britton, J. R., & M. L. Orsi, 2012. Non-native fish in aquaculture and sport fishing in Brazil: economic benefits versus risks to fish diversity in the upper River Paraná Basin. Reviews in Fish Biology and Fisheries 22(3): 555–565.

    Article  Google Scholar 

  • Canonico, G. C., A. Arthington, J.K. McCrary & M.L. Thieme, 2005. The effects of introduced tilapias on native biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 15(5): 463–483.

    Article  Google Scholar 

  • Casal, C.M.V. 2006. Global documentation of fish introductions: the growing crisis and recommendations for action. Biological Invasions 8(1): 3–11.

    Article  Google Scholar 

  • Copp, G. H., P. G. Bianco, N. G. Bogutskaya, T. Erős, I. Falka, M. T. Ferreira, M. G. Fox, J. Freyhof, R. E. Gozlan, J. Grabowska, V. Kovač, R. Moreno-Amich, A. M. Naseka, M. Peňaz, M. Povž, M. Przybylski, M. Robillard, I. C. Russell, S. Staknas, S. Šumer, A. Vila-Gispert & C. Wiesner, 2005. To be, or not to be, a non-native freshwater fish? Journal of Applied Ichthyology 21: 242–262.

    Article  Google Scholar 

  • Daga, V. S., T. Debona, V. Abilhoa, É. A. Gubiani, & J. R. S. Vitule, 2016. Non-native fish invasions of a Neotropical ecoregion with high endemism: a review of the Iguaçu River. Aquatic Invasions 11(2): 209–223.

    Article  Google Scholar 

  • DeGrandchamp, K. L., J. E. Garvey & R. E. Colombo, 2008. Movement and habitat selection by invasive Asian carps in a large river. Transactions of the American Fisheries Society 137: 45–56.

    Article  Google Scholar 

  • Didham, R. K., J. M. Tylianakis, N. J. Gemmell, T. A. Rand & R. M. Ewers, 2007. Interactive effects of habitat modification and species invasion on native species decline. Trends in Ecology & Evolution 22: 489–496.

    Article  Google Scholar 

  • Dobrai L., 1974. A magyar halászat nemzetközi kapcsolatai I. Közreműködünk a FAO munkájában. Halászat 67(4): 103–104. (in Hungarian).

    Google Scholar 

  • Dobrai, L., 1979. A magyar halászat nemzetközi kapcsolatai. Halászat 72(2): 33–34. (in Hungarian).

    Google Scholar 

  • Ellender, B. R. & O. L. F. Weyl, 2014. A review of current knowledge, risk and ecological impacts associated with non-native freshwater fish introductions in South Africa. Aquatic Invasions 9: 117–132.

    Article  Google Scholar 

  • Ehlers, M., M. Möller, S. Marangon, & N. Ferre, 2003. The use of geographic information system (GIS) in the frame of the contingency plan implemented during the 1999-2001 avian influenza (AI) epidemic in Italy. Avian Diseases, 47: 1010–1014.

    Article  CAS  PubMed  Google Scholar 

  • Elvira, B. & A. Almodóvar, 2001. Freshwater fish introductions in Spain: facts and figures at the beginning of the 21st century. Journal of Fish Biology 59: 323–331.

    Article  Google Scholar 

  • Erős, T., 2007. Partitioning the diversity of riverine fish: the roles of habitat types and non-native species. Freshwater Biology 52: 1400–1415.

    Article  Google Scholar 

  • Erős, T., & G. Guti, 1997. Kessler-géb (Neogobius kessleri Günther, 1861) a Duna magyarországi szakaszán - új halfaj előfordulásának igazolása. Halászat 90: 83–84. (in Hungarian with English summary).

    Google Scholar 

  • Erős, T., A. Sevcsik & B. Tóth, 2005. Abundance and night-time habitat use patterns of Ponto-Caspian gobiid species (Pisces, Gobiidae) in the littoral zone of the River Danube, Hungary. Journal of Applied Ichthyology 21: 350–357.

    Article  Google Scholar 

  • Erős, T., P. Takács, P. Sály, A. Specziár, Á. I. György & P. Bíró, 2008. Az amurgéb (Perccottus glenii Dybowski, 1877) megjelenése a Balaton vízgyűjtőjén. Halászat 101: 75–77 (in Hungarian with English summary).

    Google Scholar 

  • Erős, T., P. Sály, P. Takács, A. Specziár & P. Bíró, 2012. Temporal variability in the spatial and environmental determinants of functional metacommunity organization–stream fish in a human‐modified landscape. Freshwater Biology 57: 1914–1928.

    Article  Google Scholar 

  • Feledi, T. G, Gyalog, B. Kucska, M. Fehér, Gy. Borbély, M. Jancsó, L. Stündl, & A. Rónyai, 2011. Újabb ígéretes fajok az európai akvakultúrában: a barramundi (Lates calcarifer Bloch, 1790) és a vörös árnyékhal (Sciaenops ocellatus L., 1766). Halászat 104(3-4): 75–80. (in Hungarian).

  • Ferincz, Á., Á.Staszny, A. Weiperth, P. Takács, Urbányi, B. Vilizzi, L., G. Paulovits, & G. H. Copp, 2016a. Risk assessment of non-native fishes in the catchment of the largest Central-European shallow lake (Lake Balaton, Hungary). Hydrobiologia 1–13.

  • Ferincz, Á., Z. Horváth, Á. Staszny, A. Ács, N. Kováts, C. F. Vad, G. Paulovits, 2016b. Desiccation frequency drives local invasions of non-native gibel carp (Carassius gibelio) in the catchment of a large, shallow lake (Lake Balaton, Hungary). Fisheries Research 173: 37–44.

    Article  Google Scholar 

  • Ficetola, G. F., W. Thuiller & C. Miaud, 2007. Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog. Diversity and Distributions 13: 476–485.

    Article  Google Scholar 

  • García-Berthou, E., C. Alcaraz, Q. Pou-Rovira, L. Zamora, G. Coenders & C. Feo, 2005. Introduction pathways and establishment rates of invasive aquatic species in Europe. Canadian Journal of Fisheries and Aquatic Sciences 62: 453–463.

    Article  Google Scholar 

  • Gollasch, S. & S. Nehring, 2006. National checklist for aquatic alien species in Germany. Aquatic Invasions 1: 245–269.

    Article  Google Scholar 

  • Gotelli, N. J. & G. L. Entsminger, 2001. EcoSim: Null models software for ecology.

  • Gozlan, R. E. 2008. Introduction of non-native freshwater fish: is it all bad? Fish and Fisheries 9: 106–115.

    Article  Google Scholar 

  • Gozlan, R. E., J. R. Britton, I. Cowx & G. H. Copp, 2010. Current knowledge on non-native freshwater fish introductions. Journal of Fish Biology 76: 751–786.

    Article  Google Scholar 

  • Grabowska, J., J. Kotusz & A. Witkowski, 2010. Alien invasive fish species in Polish waters: an overview. Folia Zoologica 59: 73–85.

    Google Scholar 

  • Gurevitch, J. & D. K. Padilla, 2004. Are invasive species a major cause of extinctions? Trends in Ecology & Evolution 19: 470–474.

    Article  Google Scholar 

  • Guti, G., 1999. Syrman-géb (Neogobius syrman) a Duna magyarországi szakaszán. Halászat 92: 30–33. (in Hungarian).

    Google Scholar 

  • Guti, G., 2014. A Szirman géb (Ponticola syrman Nordmann, 1840) magyarországi előfordulásáról beszámoló korábbi közlemény felülvizsgálata. Pisces Hungarici 8: 101–105 (in Hungarian with English summary).

    Google Scholar 

  • Guti, G., T. Erős, Z. Szalóky & B. Tóth, 2003. A kerekfejű géb, a Neogobius melanostomus (Pallas, 1811) megjelenése a Duna magyarországi szakaszán. Halászat 96: 116–119. (in Hungarian).

    Google Scholar 

  • Halasi-Kovács, B. & Á. Harka, 2012. Hány halfaj él Magyarországon? A magyar halfauna zoogeográfiai és taxonómiai áttekintése, értékelése. Pisces Hungarici 6: 5–24. (in Hungarian with English summary).

    Google Scholar 

  • Halasi-Kovács, B., L. Antal & S. A. Nagy, 2011. First record of a Ponto-Caspian Knipowitschia species (Gobiidae) in the Carpathian basin, Hungary. Cybium 35: 257–258.

    Google Scholar 

  • Halasi-Kovács, B., N. Puskás & I. Szűcs, 2012. A magyarországi halastavi vízgazdálkodás jellemzői, komplex természeti-gazdasági-társadalmi jelentősége, valamint a fenntartható gazdálkodást veszélyeztető problémák értékelése. Halászatfejlesztés 34 - Fisheries and Aquaculture Development 34: 78–95. (in Hungarian).

  • Harka, Á., 1998. Magyarország faunájának új halfaja: az amurgéb (Perccottus glehni Dybowski, 1877). Halászat 91: 32–33. (in Hungarian).

    Google Scholar 

  • Harka, Á & P. Bíró, 2007. New patterns in Danubian distribution of Ponto-Caspian gobies—a result of global climate change and/or canalization? Electronic Journal of Ichthyology 3: 1–14.

    Google Scholar 

  • Harka, Á. & Z. Sallai, 2004. Magyarország halfaunája. Nimfea Természetvédelmi Egyesület, Szarvas, Budapest. (in Hungarian).

    Google Scholar 

  • Harka, Á. & Zs. Szepesi, 2010. Hány pikófaj (Gasterosteus sp.) él Magyarországon? Pisces Hungarici 4: 101–104. (in Hungarian with English summary).

    Google Scholar 

  • Harka, Á., Z. Sallai & J. Koščo, 2003. Az amurgéb (Perccottus glenii) terjedése a Tisza vízrendszerében. A Puszta 18: 49–56. (in Hungarian).

    Google Scholar 

  • Harka, Á., K. Nyeste, L. Nagy & T. Erős, 2014. Bíborsügér (Hemichromis guttatus Günther, 1862) a Hévízi-tó termálvizében. Pisces Hungarici 8: 29–34. (in Hungarian with English summary).

    Google Scholar 

  • Hewitt, G. M., 1999. Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society 68: 87–112.

    Article  Google Scholar 

  • Holčík, J. 1991. Fish introductions in Europe with particular reference to its central and eastern part. Canadian Journal of Fisheries and Aquatic Sciences 48: 13–23.

    Article  Google Scholar 

  • Hughes, J. D., 2003. Europe as consumer of exotic biodiversity: Greek and Roman times. Landscape Research 28: 21–31.

    Article  Google Scholar 

  • Hickley, P., & S. Chare, 2004. Fisheries for non‐native species in England and Wales: angling or the environment? Fisheries Management and Ecology 11.3‐4: 203–212.

    Article  Google Scholar 

  • Hinterthuer, A. 2012. The explosive spread of Asian Carp can the Great Lakes be protected? Does it matter? BioScience, 62(3): 220–224.

    Article  Google Scholar 

  • Irons, K. S., G. G. Sass, M. A. McClelland, & T. M., O’Hara, 2011. Bigheaded carp invasion of the La Grange Reach of the Illinois River: insights from the long term resource monitoring program. In American Fisheries Society Symposium (No. 74).

  • Jakovlić, I., M. Piria, N. Šprem, T. Tomljanović, D. Matulić & T. Treer, 2015. Distribution, abundance and condition of invasive Ponto‐Caspian gobies Ponticola kessleri (Günther, 1861), Neogobius fluviatilis (Pallas, 1814), and Neogobius melanostomus (Pallas, 1814) in the Sava River basin, Croatia. Journal of Applied Ichthyology 31: 888–894.

    Article  Google Scholar 

  • Joyce, K. 2009. “To me it’s just another tool to help understand the evidence”: public health decision-makers’ perceptions of the value of geographical information systems (GIS). Health & Place, 15(3): 831–840.

    Article  Google Scholar 

  • Keller, R. P., J. M. Drake, M. B. Drew & D. M. Lodge, 2011. Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network. Diversity and Distributions 17: 93–102.

    Article  Google Scholar 

  • Klotz, W., F. W. Miesen, S. Hüllen & F. Herder, 2013. Two Asian fresh water shrimp species found in a thermally polluted stream system in North Rhine-Westphalia, Germany. Aquatic Invasions 8: 333–339.

    Article  Google Scholar 

  • Koščo, J. & P. Balázs, 2000. Új egzotikus faj (Pseudotropheus tropheops) az Ipoly vízrendszerében, valamint néhány megjegyzés egyes akváriumi halak vadvizekbe történő telepítéséről. A Puszta 17: 45. (in Hungarian).

    Google Scholar 

  • Koščo, J., L. Košuthová, P. Košuth & L. Pekárik, 2010. Non-native fish species in Slovak waters: origins and present status. Biologia 65: 1057–1063.

    Article  Google Scholar 

  • Kottelat, M. & J. Freyhof, 2007. Handbook of European Freshwater Fishes. Publications Kottelat, Cornol.

    Google Scholar 

  • Kriesch, J., 1872. Egy új hal-faj [Gobius rubromaculatus]. Mathematikai és természettudományi közlemények 10: 221–232. (in Hungarian).

    Google Scholar 

  • Lee I. I., D. A. Reusser, J. D. Olden, S. S. Smith, J. Graham, V. Burkett, J. S. Dukes, R. J. Piorkowski, & J. S. McPhedran McPhedran, 2008. Integrated monitoring and information systems for managing aquatic invasive species in a changing climate. Conservation Biology 22(3): 575–584.

    Article  PubMed  Google Scholar 

  • Leprieur, F., O., Beauchard, S. Blanchet, T. Oberdorff, & S. Brosse, 2008. Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS Biology 6(2): e28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lovász, G., 2012. Water temperatures of the Danube and Tisza Rivers in Hungary. Hungarian Geographical Bulletin 61: 317–325.

    Google Scholar 

  • Lusk, S., V. Lusková & L. Hanel, 2010. Alien fish species in the Czech Republic and their impact on the native fish fauna. Folia Zoologica 59: 57–72.

    Google Scholar 

  • McColl, K. A., B. D. Cooke, & A. Sunarto, 2014. Viral biocontrol of invasive vertebrates: Lessons from the past applied to cyprinid herpesvirus-3 and carp (Cyprinus carpio) control in Australia. Biological Control 72: 109–117.

    Article  Google Scholar 

  • Magalhaes, A. L. B. D., & C. M. Jacobi, 2013. Invasion risks posed by ornamental freshwater fish trade to southeastern Brazilian rivers. Neotropical Ichthyology 11(2): 433–441.

    Article  Google Scholar 

  • Magalhães, A. L. B., & J. R. S. Vitule, 2013. Aquarium industry threatens biodiversity. Science 341: 457.

    Article  PubMed  Google Scholar 

  • Manchester, S. J. & J. M. Bullock, 2000. The impacts of non-native species on UK biodiversity and the effectiveness of control. Journal of Applied Ecology 37: 845–864.

    Article  Google Scholar 

  • Martonné Erdős, K., 2004. Magyarország természeti földrajza I, Debreceni Egyetem Kossuth Egyetemi Kiadója, Debrecen. (in Hungarian).

    Google Scholar 

  • Márián, T., Z. Krasznai & J. Oláh, 1986. Characteristic karyological, biochemical and morphological markers of silver carp (Hypophthalmichthys molitrix Val.), bighead carp (Aristichthys nobilis Rich.) and their hybrids. Aquacultura Hungarica 5: 15–30.

    Google Scholar 

  • Mckinney, M. L. & J. L. Lockwood, 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14: 450–453.

    Article  CAS  Google Scholar 

  • Mihályfi, F., 1939. A szúnyog elleni védekezés entomológiai előkészítése Hévízen. Állattani Közlemények 36: 107–117. (in Hungarian).

    Google Scholar 

  • Mitas, L. & H. Mitasova, 1999. Spatial interpolation. Geographical Information Systems: Principles, Techniques, Management and Applications 1: 481–492.

    Google Scholar 

  • Naylor, R., S. L. Williams & D. R. Strong, 2001. Aquaculture—a gateway for exotic species. Science 294: 1655–1656.

    Article  CAS  PubMed  Google Scholar 

  • Nováky, B. & G. Bálint, 2013. Shifts and modification of the hydrological regime under climate change in Hungary. In Bharat raj Singh (ed), Realities, impacts over ice cap, sea level and risks. InTech Open Access Publisher, Rijeka: 163–190.

  • Olden, J. D. & T. P. Rooney, 2006. On defining and quantifying biotic homogenization. Global Ecology and Biogeography 15: 113–120.

    Article  Google Scholar 

  • Ortega, J. C., H. F. Júlio Jr, L. C. Gomes, & A. A. Agostinho, 2015. Fish farming as the main driver of fish introductions in Neotropical reservoirs. Hydrobiologia 746(1): 147–158.

    Article  Google Scholar 

  • Panov, V. E., B. Alexandrov, K. Arbačiauskas, R. Binimelis, G. H. Copp, M. Grabowski & V. Semenchenko, 2009. Assessing the risks of aquatic species invasions via European inland waterways: the concepts and environmental indicators. Integrated Environmental Assessment and Management 5: 110–126.

    Article  CAS  PubMed  Google Scholar 

  • Paunović, M., B. Csányi, P. Simonović & K. Zorić, 2015. Invasive alien species in the Danube. In Liska, I. (ed), The Danube River Basin. Springer, Berlin: 389–409.

    Chapter  Google Scholar 

  • Pelicice, F. M., J. R. S. Vitule, D. P. Lima Jr., M. L. Orsi, & A. A. Agostinho, 2014. A serious new threat to Brazilian freshwater ecosystems: the naturalization of nonnative fish by decree. Conservation Letters 7: 55–60.

    Article  Google Scholar 

  • Perry-Gal, L., A. Erlich, A. Gilboa & G. Bar-Oz, 2015. Earliest economic exploitation of chicken outside East Asia: evidence from the Hellenistic Southern Levant. Proceedings of the National Academy of Sciences 112: 9849–9854.

    Article  CAS  Google Scholar 

  • Pimentel, D., R. Zuniga & D. Morrison, 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52: 273–288.

    Article  Google Scholar 

  • Pintér, K., 1980. Exotic fishes in Hungarian Waters: their importance in fishery utilization of natural water bodies and fish farming. Fisheries Management 11: 163–167.

    Google Scholar 

  • Pintér, K., 1989. Magyarország halai. Akadémiai Kiadó, Budapest. (in Hungarian).

    Google Scholar 

  • Piria, M., G. Jakšić, I. Jakovlić & T. Treer, 2016. Dietary habits of invasive Ponto-Caspian gobies in the Croatian part of the Danube River basin and their potential impact on benthic fish communities. Science of the Total Environment 540: 386–395.

    Article  CAS  PubMed  Google Scholar 

  • Povž, M. & S. Šumer, 2005. A brief review of non-native freshwater fishes in Slovenia. Journal of Applied Ichthyology 21: 316–318.

    Article  Google Scholar 

  • QGIS Development Team, 2016. QGIS Geographic Information System. Open Source Geospatial Foundation Project.

  • Rabitsch, W., N. Milasowszky, S. Nehring, C. Wiesner, C. Wolter, & F. Essl, 2013. The times are changing: temporal shifts in patterns of fish invasions in central European fresh waters. Journal of Fish Biology 82(1): 17–33.

    Article  CAS  PubMed  Google Scholar 

  • Rahel, F. J. & J. D. Olden, 2008. Assessing the effects of climate change on aquatic invasive species. Conservation Biology 22: 521–533.

    Article  PubMed  Google Scholar 

  • Reshetnikov, A. N. 2013. Spatio-temporal dynamics of the expansion of rotan Perccottus glenii from West-Ukrainian centre of distribution and consequences for European freshwater ecosystems. Aquatic Invasions 8: 193–206.

    Article  Google Scholar 

  • Reshetnikov, A. N. & G. F. Ficetola, 2011. Potential range of the invasive fish rotan (Perccottus glenii) in the Holarctic. Biological Invasions 13: 2967–2980.

    Article  Google Scholar 

  • Reshetnikov, A. N. & A. S. Karyagina, 2015. Further evidence of naturalisation of the invasive fish Perccottus glenii Dybowski, 1877 (Perciformes: Odontobutidae) in Germany and necessity of urgent management response. Acta Zoologica Bulgarica 67: 553–556.

    Google Scholar 

  • Roche, K. F., M. Janač & P. Jurajda, 2013. A review of Gobiid expansion along the Danube-Rhine corridor–geopolitical change as a driver for invasion. Knowledge and Management of Aquatic Ecosystems 411: 01.

    Article  Google Scholar 

  • Sály, P., 2007. The system of faunacomponents conception and its application to qualify the degree of naturalness of fish assemblages. Pisces Hungarici 1: 93–101. (in Hungarian with English summary).

    Google Scholar 

  • Sály, P., T. Erős, P. Takács, Cs. Bereczki & P. Bíró, 2008. Biological homogenization or differentiation? Changes of fish assemblage diversity in small watercourses of Lake Balaton. Hidrológiai Közlöny 88: 162–164. (in Hungarian with English summary).

    Google Scholar 

  • Sály, P., T. Erős, P. Takács, A. Specziár, I. Kiss & P. Bíró, 2009. Assemblage level monitoring of stream fishes: the relative efficiency of single-pass vs. double-pass electrofishing. Fisheries Research 99: 226–233.

    Article  Google Scholar 

  • Sály, P., P. Takács, I. Kiss, P. Bíró & T. Erős, 2012. Effect of local- and landscape-scale factors on the distribution of non-native fishes in small watercourses of the catchment area of Lake Balaton (Hungary). Állattani Közlemények 97: 181–199. (in Hungarian with an English summary).

    Google Scholar 

  • Schlosser, I. J., 1982. Fish community structure and function along two habitat gradients in a headwater stream. Ecological Monographs 52: 395–414.

    Article  Google Scholar 

  • Specziár, A., 2004. Life history pattern and feeding ecology of the introduced eastern mosquitofish, Gambusia holbrooki, in a thermal spa under temperate climate, of Lake Heviz, Hungary. Hydrobiologia 522: 249–260.

    Article  Google Scholar 

  • Specziár, A. & T. Erős, 2015. Freshwater resources and fisheries in Hungary In: Craig, J. F. (ed) Freshwater Fisheries Ecology. Wiley-Blackwell Publishing Ltd., Oxford: 196–200.

    Chapter  Google Scholar 

  • Sterbetz, I., 1957. Tüskés Pikó a Dunában. Halászat 4: 75. (in Hungarian).

    Google Scholar 

  • Szalóky, Z., V. Bammer, Á. I. György, L. Pehlivanov, M. Schabuss, H. Zornig & T. Eros, 2015. Offshore distribution of invasive gobies (Pisces: Gobiidae) along the longitudinal profile of the Danube River. Fundamental and Applied Limnology 187: 127–133.

    Article  Google Scholar 

  • Szepesi, Zs. & Á. Harka, 2015. Szúnyogirtó fogaspontyok (Gambusia holbrooki) megtelepedése a Zagyvában. Halászat 108: 11. (in Hungarian with English summary).

    Google Scholar 

  • Szolnoky, C. & L. Raum, 1991. Regulation of the thermal loading by Paks Nuclear Power Station. Periodica Polytechnica Civil Engineering 35: 41–50.

    Google Scholar 

  • Tahy, B., 1975. A magyar halászat kapcsolatai. Csehszlovákia. Halászat. 68(2): 37. (in Hungarian).

    Google Scholar 

  • Takács, P. & Z. Vitál, 2012. Amurgéb (Perccottus glenii Dybowski, 1877) a Duna mentén. Halászat 105: 16. (in Hungarian with English summary).

    Google Scholar 

  • Takács, P., Cs. Bereczki, P. Sály, A. Móra & P. Bíró, 2007. A Balatonba torkolló kisvízfolyások halfaunisztikai vizsgálata. Hidrológiai Közlöny 87: 175–177. (in Hungarian with English summary).

    Google Scholar 

  • Takács, P., G. Maász, Z. Vitál & Á. Harka, 2015a. Akváriumi halak a Hévíz-lefolyó termálvizében Pisces Hungarici 9: 59–64. (in Hungarian with English summary).

    Google Scholar 

  • Takács, P., I. Czeglédi & Á. Ferincz, 2015b. Amurgéb (Perccottus glenii) a Dráva vízgyűjtőjéről - Halászat 108: 15. (in Hungarian with English summary).

  • Tatár, S., B. Bajomi, A. Specziár, B. Tóth, M. M. Trenovszki, B. Urbányi, B. Csányi, J. Szekeres & T. Müller, 2016. Habitat establishment, captive breeding and conservation translocation to save threatened populations of the Vulnerable European mudminnow Umbra krameri. Oryx 1–12..

  • Taylor, A., G. Rigby, S. Gollasch, M. Voigt, G. Hallegraef, T. McCollin & A. Jelmert, 2002. Preventive treatment and control techniques for ballast water. In Leppäkoski, E., S. Gollasch & S. Olenin, (eds), Invasive Aquatic Species of Europe. Distribution, Impacts and Management. Springer, Netherlands: 484–507.

  • Thomas, A. & M. Chovet, 2013. De´couverte de l’Anodonte chinoise Sinanodonta woodiana (Lea, 1834) (Mollusca, Bivalvia, Unionidae) dans le canal d’Orle´ans (Loiret, France). MalaCo 9: 463–466 (in French).

    Google Scholar 

  • Thomsen, M., T. Wernberg., J. Olden, J. E. Byers, J. Bruno, B. Silliman & D. Schiel, 2014. Forty years of experiments on aquatic invasive species: are study biases limiting our understanding of impacts? NeoBiota 22: 1.

  • URL1: http://www.termeszetvedelem.hu/_user/browser/File/NBmR/Halak/2b_Halas%20protokoll_080826_vegl_honlapra%20helyek%20n%C3%A9lk%C3%BCl.pdf (in Hungarian) (date of access: 16. 12. 2016)

  • URL2: http://www.fao.org/fishery/introsp/472/en (date of access: 22. 02. 2016).

  • Xiong, W., X.Sui, S. H. Liang, & Y. Chen, 2015. Non-native freshwater fish species in China. Reviews in Fish Biology and Fisheries 25(4): 651–687.

    Article  Google Scholar 

  • Vitule, J. R. S., C. A. Freire, & D. Simberloff, 2009. Introduction of non-native freshwater fish can certainly be bad. Fish and Fisheries 10: 98–108.

    Article  Google Scholar 

  • Vutskits, Gy. 1912. Az amerikai származású naphal meghonosodása a Balatonban. Természettudományi közlöny 44: 467–468. (in Hungarian)

  • Vutskits, Gy., 1913. A Pisztrángsügér és a naphal meghonosodása a Drávában-Természettudományi Közlemények 748–749. (in Hungarian).

  • Weiperth, A., Á. Staszny & Á. Ferincz, 2013. Idegenhonos halfajok megjelenése és terjedése a Duna magyarországi szakaszán – Történeti áttekintés. Pisces Hungarici 7: 103–112. (in Hungarian with English summary).

    Google Scholar 

  • Weiperth, A., B. Csányi, Á. I. György, J. Szekeres, T. Friedrich, & Z. Szalóky, 2014. Observation of the non-native sturgeon hybrid (Acipenser naccarii x Acipenser baerii) in the Hungarian section of River Danube. Pisces Hungarici 8: 111. (in Hungarian with English summary).

    Google Scholar 

  • Weiperth, A., B. Csányi, B. Gál, Á. I. György, Z. Szalóky, J. Szekeres, B. Tóth & † M. Puky, 2015. Egzotikus rák-, hal- és kétéltűfajok a Budapest környéki víztestekben. Pisces Hungarici 9: 65–70. (in Hungarian with English summary).

  • Wieseinger, M., 1975. Akvarisztika. Gondolat Kiadó, Budapest: 327. (in Hungarian).

  • Welcomme, R. L. (ed.), 1988. International introductions of inland aquatic species. FAO Fisheries Technical Paper 294. FAO, Rome.

  • Welcomme, R. L. 1992. A history of international introductions of inland aquatic species. ICES Marine Science Symposium 194: 3–14.

    Google Scholar 

Download references

Acknowledgements

Fish faunistic surveys were made within the frame of the following projects: OTKA CNK80140, OTKA K104279, OTKA PD115801 and a KEHOP2015 project of the General Directorate of Water Management. We would like to express our thanks to colleagues at the General Directorate of Water Management, but Gy. I. Tóth and T.A. Zagyva for their help in several phases of the work. Data analysis was supported by the GINOP 2.3.2-15-2016-00004 project. Árpád Ferincz was supported by the Bolyai Fellowship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Takács.

Additional information

Handling editor: Fernando Pelicice

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takács, P., Czeglédi, I., Ferincz, Á. et al. Non-native fish species in Hungarian waters: historical overview, potential sources and recent trends in their distribution. Hydrobiologia 795, 1–22 (2017). https://doi.org/10.1007/s10750-017-3147-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3147-x

Keywords

Navigation