Ecosystem services provided by freshwater mussels

Abstract

Ecosystem services are the benefits that humans derive from ecosystems. Freshwater mussels perform many important functions in aquatic ecosystems, which can in turn be framed as the ecosystem services that they contribute to or provide. These include supporting services such as nutrient recycling and storage, structural habitat, substrate and food web modification, and use as environmental monitors; regulating services such as water purification (biofiltration); and provisioning and cultural services including use as a food source, as tools and jewelry, and for spiritual enhancement. Mussel-provided ecosystem services are declining because of large declines in mussel abundance. Mussel propagation could be used to restore populations of common mussel species and their ecosystem services. We need much more quantification of the economic, social, and ecological value and magnitude of ecosystem services provided by mussels, across species, habitats, and environmental conditions, and scaled up to whole watersheds. In addition, we need tools that will allow us to value mussel ecosystem services in a way that is understandable to both the public and to policy makers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Aldridge, D. C., T. M. Fayle & N. Jackson, 2007. Freshwater mussel abundance predicts biodiversity in UK lowland rivers. Aquatic Conservation-Marine and Freshwater Ecosystems 17: 554–564.

    Article  Google Scholar 

  2. Allen, D. C. & C. C. Vaughn, 2010. Complex hydraulic and substrate variables limit freshwater mussel species richness and abundance. Journal of the North American Benthological Society 29: 383–394.

    Article  Google Scholar 

  3. Allen, D. C. & C. C. Vaughn, 2011. Density-dependent biodiversity effects on physical habitat modification by freshwater bivalves. Ecology 92: 1013–1019.

    PubMed  Article  Google Scholar 

  4. Allen, D. C., C. C. Vaughn, J. F. Kelly, J. R. Cooper & M. H. Engel, 2012. Bottom-up biodiversity effects increase resource subsidy flux between ecosystems. Ecology 93: 2165–2174.

    PubMed  Article  Google Scholar 

  5. Allen, D. C., H. S. Galbraith, C. C. Vaughn & D. E. Spooner, 2013. A tale of two rivers: implications of water management practices for mussel biodiversity outcomes during droughts. Ambio 42: 881–891.

    PubMed  PubMed Central  Article  Google Scholar 

  6. Allen, D. C., B. J. Cardinale & T. Wynn-Thompson, 2014. Toward a better integration of ecological principlesinto ecogeoscience research. BioScience 64: 444–454.

    Article  Google Scholar 

  7. Atkinson, C. L., 2013. Razor-backed musk turtle (Sternotherus carinatus) diet across a gradient of invasion. Herpetological Conservation and Biology 8: 561–570.

    Google Scholar 

  8. Atkinson, C. L. & C. C. Vaughn, 2015. Biogeochemical hotspots: temporal and spatial scaling of the impact of freshwater mussels on ecosystem function. Freshwater Biology 60: 563–574.

    CAS  Article  Google Scholar 

  9. Atkinson, C. L., C. C. Vaughn & K. J. Forshay, 2013a. Native mussels alter nutrient availability and reduce blue-green algae abundance. EPA Science Brief EPA/600/F13/231

  10. Atkinson, C. L., C. C. Vaughn, K. J. Forshay & J. T. Cooper, 2013b. Aggregated filter-feeding consumers alter nutrient limitation: consequences for ecosystem and community dynamics. Ecology 94: 1359–1369.

    PubMed  Article  Google Scholar 

  11. Atkinson, C. L., A. D. Christian, D. E. Spooner & C. C. Vaughn, 2014a. Long-lived organisms provide an integrative footprint of agricultural land use. Ecological Applications 24: 375–384.

    PubMed  Article  Google Scholar 

  12. Atkinson, C. L., J. P. Julian & C. C. Vaughn, 2014b. Species and function lost: role of drought in structuring stream communities. Biological Conservation 176: 30–38.

    Article  Google Scholar 

  13. Atkinson, C. L., J. F. Kelly & C. C. Vaughn, 2014c. Tracing consumer-derived nitrogen in riverine food webs. Ecosystems 17: 485–496.

    CAS  Article  Google Scholar 

  14. Augspurger, T., F. J. Dwyer, C. G. Ingersoll & C. M. Kane, 2007. Advances and opportunities in assessing contaminant sensitivity of freshwater mussel (Unionidae) early life stages. Environmental Toxicology and Chemistry 26: 2025–2028.

    CAS  PubMed  Article  Google Scholar 

  15. Beck, M. W., R. D. Brumbaugh, L. Airoldi, A. Carranza, L. D. Coen, C. Crawford, O. Defeo, G. J. Edgar, B. Hancock, M. C. Kay, H. S. Lenihan, M. W. Luckenbach, C. L. Toropova, G. Zhang & X. Guo, 2011. Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience 61: 107–116.

    Article  Google Scholar 

  16. Beckett, D. C., B. W. Green & S. A. Thomas, 1996. Epizoic invertebrate communities on upper Mississippi River unionid bivalves. American Midland Naturalist 135: 102–114.

    Article  Google Scholar 

  17. Black, B. A., J. B. Dunham, B. W. Blundon, M. F. Raggon & D. Zima, 2010. Spatial variability in growth-increment chronologies of long-lived freshwater mussels: Implications for climate impacts and reconstructions. Ecoscience 17: 240–250.

    Article  Google Scholar 

  18. Blazejowski, B., G. Racki, P. Gieszcz, K. Malkowski, A. Kin & K. Krzywiecka, 2013. Comparative oxygen and carbon isotopic records of miocene and recent lacustrine unionid bivalves from Poland. Geological Quarterly 57: 113–122.

    Google Scholar 

  19. Bodis, E., B. Toth & R. Sousa, 2014. Massive mortality of invasive bivalves as a potential resource subsidy for the adjacent terrestrial food web. Hydrobiologia 735: 253–262.

    Article  Google Scholar 

  20. Bolotov, I., I. Vikhrev, Y. Bespalaya, V. Artamonova, M. Gofarov, J. Kolosova, A. Kondakov, A. Makhrov Frolov, S. Tumpeesuwan, A. Lyubas, T. Romanis & K. Titova, 2014. Ecology and conservation of the Indochinese freshwater pearl mussel, Margaritifera laosensis (Lea, 18634) in the Nam Pe and Nam Long rivers, Northern Laos. Tropical Conservation Science 4: 706–719.

    Article  Google Scholar 

  21. Brauman, K. A., G. C. Daily, T. K. Duarte & H. A. Mooney, 2007. The nature and value of ecosystem services: an overview highlighting hydrologic services. Annual Review of Environment and Resources. 32: 67–98.

    Article  Google Scholar 

  22. Bril, J. S., J. J. Durst, B. M. Hurley, C. L. Just & T. J. Newton, 2014. Sensor data as a measure of native freshwater mussel impact on nitrate formation and food digestion in continuous-flow mesocosms. Freshwater Science 33: 417–424.

    Article  Google Scholar 

  23. Brim Box, J., J. Howard, D. Wolf, C. O’Brien, D. Nez & D. Close, 2006. Freshwater mussels (Bivalvia: Unionoida) of the Umatilla and Middle Fork John Day rivers in eastern Oregon. Northwest Science 80: 95–107.

    Google Scholar 

  24. Brown, M. E., M. Kowalewski, R. J. Neves, D. S. Cherry & M. E. Schreiber, 2005. Freshwater mussel shells as environmental chronicles: geochemical and taphonomic signatures of mercury-related extirpations in the North Fork Holston River, Virginia. Environmental Science & Technology 39: 1455–1462.

    CAS  Article  Google Scholar 

  25. Brubaker, M., J. Bell & A. Rollin, 2009. Climate Change Effects on Traditional Inupiaq Food Cellars. Center for Climate and Health Alaska Native Health Consortium, CCH Bulletin No: 1.

    Google Scholar 

  26. Bruesewitz, D. A., J. L. Tank & S. K. Hamilton, 2009. Seasonal effects of zebra mussels on littoral nitrogen transformation rates in Gull Lake, Michigan, USA. Freshwater Biology 54: 1427–1443.

    CAS  Article  Google Scholar 

  27. Castro, A. J., C. C. Vaughn, M. Garcia-Llorente, J. P. Julian & C. L. Atkinson, 2016a. Willingness to pay for ecosystem services among stakeholder groups in a south-central US watershed with regional conflict. Journal of Water Resources Planning and Management 142: 05016006.

    Article  Google Scholar 

  28. Castro, A. J., C. C. Vaughn, J. P. Julian & M. Garcia-Llorente, 2016b. Social demand for ecosystem services and implications for watershed management. Journal of the American Water Resources Association 52: 209–221.

    Article  Google Scholar 

  29. Choctaw Nation., 2016. http://www.choctawschool.com/home-side-menu/iti-fabvssa/traditional-uses-of-freshwater-mussels.asp

  30. Chowdhury, G. W., A. Zieritz & D. C. Aldridge, 2016. Ecosystem engineering by mussels supports biodiversity and water clarity in a heavily polluted lake in Dhaka, Bangladesh. Freshwater Science 35: 188–199.

    Article  Google Scholar 

  31. Christian, A. D., B. N. Smith, D. J. Berg, J. C. Smoot & R. H. Findley, 2004. Trophic position and potential food sources of 2 species of unionid bivalves (Mollusca: Unionidae) in 2 small Ohio streams. Journal of North American Benthological Society 23: 101–113.

    Article  Google Scholar 

  32. Claassen, C., 2008. Shell symbolisms in pre-Columbian North America. In Antczak, A. & R. Cipriani (eds), Early Human Impacts on Megamolluscs. International Series 1865. British Archeological Reports, 232–236

  33. Cope, W. G., R. B. Bringolf, D. B. Buchwalter, T. J. Newton, C. G. Ingersoll, N. Wang, T. Augspurger, F. J. Dwyer, M. C. Barnhart, R. J. Neves & E. Hammer, 2008. Differential exposure, duration, and sensitivity of unionoidean bivalve life stages to environmental contaminants. Journal of the North American Benthological Society 27: 451–462.

    Article  Google Scholar 

  34. Daily, G. C., S. Alexander, P. R. Ehrlich, L. Goulder, J. Lubchenco, P. A. Matson, H. A. Mooney, S. Postel, S. H. Schneider, D. Tilman & G. M. Woodwell, 1997. Ecosystem services: benefits supplied to human societies by natural ecosystems. Issues in Ecology 2: 1–16.

    Google Scholar 

  35. Delong, M. D. & J. H. Thorp, 2009. Mollusc shell periostracum as an alternative to tissue in isotopic studies. Limnology and Oceanography-Methods 7: 436–441.

    CAS  Article  Google Scholar 

  36. Dodds, W. K., J. S. Perkin & J. E. Gerken, 2013. Human impact on freshwater ecosystem services: a global perspective. Environmental Science & Technology 47: 9061–9068.

    CAS  Article  Google Scholar 

  37. Du, B., S. P. Haddad, A. Luek, W. C. Scott, G. N. Saari, L. A. Kristofco, K. A. Connors, C. Rash, J. B. Rasmussen, C. K. Chambliss & B. W. Brooks, 2014. Bioaccumulation and trophic dilution of human pharmaceuticals across trophic positions of an effluent-dependent wadeable stream. Philosophical Transactions of the Royal Society B-Biological Sciences 369: 20140058.

    PubMed Central  Article  CAS  Google Scholar 

  38. Dunca, E., B. R. Schone & H. Mutvei, 2005. Freshwater bivalves tell of past climates: but how clearly do shells from polluted rivers speak. Palaeogeography Palaeoclimatology Palaeoecology 228: 43–57.

    Article  Google Scholar 

  39. Faust, C., D. Stallknecht, D. Swayne & J. Brown, 2009. Filter-feeding bivalves can remove avian influenza viruses from water and reduce infectivity. Proceedings of the Royal Society B-Biological Sciences 276: 3727–3735.

    PubMed Central  Article  Google Scholar 

  40. Francoeur, S. N., A. Pinowska, T. A. Clason, S. Makosky & R. L. Lowe, 2002. Unionid bivalve influence on benthic algal community composition in a Michigan Lake. Journal of Freshwater Ecology 17: 489–500.

    Article  Google Scholar 

  41. Freshwater Mollusk Conservation Society, 2016. A national strategy for the conservation of native freshwater mollusks. Freshwater Mollusk Biology and Conservation 19: 1–21.

    Google Scholar 

  42. Fritts, A. K., J. T. Peterson, P. D. Hazelton & R. B. Bringolf, 2015. Evaluation of methods for assessing physiological biomarkers of stress in freshwater mussels. Canadian Journal of Fisheries and Aquatic Sciences 72: 1450–1459.

    CAS  Article  Google Scholar 

  43. Fritts, A. K., M. W. Fritts, W. R. Haag, J. A. DeBower & A. F. Casper, 2017. Freshwater mussel shells (Unionidae) chronicle changes in a North American river over the past 1000 years. Science of the Total Environment 575: 199–206.

    CAS  PubMed  Article  Google Scholar 

  44. Galbraith, H. S., D. E. Spooner & C. C. Vaughn, 2010. Synergistic effects of regional climate patterns and local water management on freshwater mussel communities. Biological Conservation 143: 1175–1183.

    Article  Google Scholar 

  45. Gangloff, M. M. & J. W. Feminella, 2007. Stream channel geomorphology influences mussel abundance in southern Appalachian streams, USA. Freshwater Biology 52: 64–74.

    Article  Google Scholar 

  46. Geist, J., K. Auerswald & A. Boom, 2005. Stable carbon isotopes in freshwater mussel shells: environmental record or marker for metabolic activity? Geochimica Et Cosmochimica Acta 69: 3545–3554.

    CAS  Article  Google Scholar 

  47. Goodchild, C. G., M. Frederich & S. I. Zeeman, 2015. AMP-activated protein kinase is a biomarker of energetic status in freshwater mussels exposed to municipal effluents. Science of the Total Environment 512: 201–209.

    PubMed  Article  CAS  Google Scholar 

  48. Goodchild, C. G., M. Frederich & S. I. Zeeman, 2016. Is altered behavior linked to cellular energy regulation in a freshwater mussel (Elliptio complanata) exposed to triclosan? Comparative Biochemistry and Physiology C-Toxicology & Pharmacology 179: 150–157.

    CAS  Article  Google Scholar 

  49. Grabowski, J. H., R. D. Brumbaugh, R. F. Conrad, A. G. Keeler, J. J. Opaluch, C. H. Peterson, M. F. Piehler, S. P. Powers & A. R. Smyth, 2012. Economic valuation of ecosystem services provided by oyster reefs. Bioscience 62: 900–909.

    Article  Google Scholar 

  50. Green, R. H., S. M. Singh & R. C. Bailey, 1985. Bivalve molluscs as response systems for modeling spatial and temporal environmental patterns. The Science of the Total Environment 46: 147–169.

    Article  Google Scholar 

  51. Gutierrez, J. L., C. G. Jones, D. L. Strayer & O. O. Iribane, 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101: 79–90.

    Article  Google Scholar 

  52. Haag, W. R., 2012. North American Freshwater Mussels: Ecology, Natural History and Conservation. Cambridge University Press, Cambridge.

    Google Scholar 

  53. Haag, W. R. & J. D. Williams, 2014. Biodiversity on the brink: an assessment of conservation strategies for North American freshwater mussels. Hydrobiologia 735: 45–60.

    Article  Google Scholar 

  54. Hartmann, J. T., S. Beggel, K. Auerswald, B. C. Stoeckle & J. Geist, 2016. Establishing mussel behavior as a biomarker in ecotoxicology. Aquatic Toxicology 170: 279–288.

    CAS  PubMed  Article  Google Scholar 

  55. Hauser, L. W., 2015. Predicting episodic ammonium excretion by freshwater mussels via gape response and heart rate. PhD dissertation, University of Iowa.

  56. Hoellein, T. J. & C. B. Zarnoch, 2014. Effect of eastern oysters (Crassostrea virginica) on sediment carbon and nitrogen dynamics in an urban estuary. Ecological Applications 24: 271–286.

    PubMed  Article  Google Scholar 

  57. Howard, J. K. & K. M. Cuffey, 2006. The functional role of native freshwater mussels in the fluvial benthic environment. Freshwater Biology 51: 460–474.

    Article  Google Scholar 

  58. Humphries, P. & K. O. Winemiller, 2009. Historical impacts on river fauna, shifting baselines, and challenges for restoration. Bioscience 59: 673–684.

    Article  Google Scholar 

  59. Ilarri, M. I., A. T. Souza, V. Modesto, L. Guilhermino & R. Sousa, 2015a. Differences in the macrozoobenthic fauna colonising empty bivalve shells before and after invasion by Corbicula fluminea. Marine and Freshwater Research 66: 549–558.

    Article  Google Scholar 

  60. Ilarri, M. I., A. T. Souza & R. Souza, 2015b. Contrasting decay rates of freshwater bivalves’ shells: aquatic versus terrestrial habitats. Limnologica 51: 8–14.

    Article  Google Scholar 

  61. Ismail, N. S., C. E. Muller, R. R. Morgan & R. G. Luthy, 2014. Uptake of contaminants of emerging concern by the bivalves Anodonta californiensis and Corbicula fluminea. Environmental Science & Technology 48: 9211–9219.

    CAS  Article  Google Scholar 

  62. Ismail, N. S., H. Dodd, L. M. Sassoubre, A. J. Horne, A. B. Boehm & R. G. Luthy, 2015. Improvement of urban lake water quality by removal of Escherichia coli through the action of the bivalve Anodonta californiensis. Environmental Science & Technology 49: 1664–1672.

    CAS  Article  Google Scholar 

  63. Izumi, T., K. Yagiti, S. Izumiyami, T. Endo & Y. Ituh, 2012. Depletion of Cryptosporidium parvaum oocysts from contaminated sewage using freshwater benthic pearl clams (Hyriopsis schlegeli). Applied and Environmental Microbiology 78: 7420–7428.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Jamil, A., K. Lajtha, S. Radan, G. Ruzsa, S. Cristofor & C. Postolache, 1999. Mussels as bioindicators of trace metal pollution in the Danube Delta of Romania. Hydrobiologia 392: 143–158.

    CAS  Article  Google Scholar 

  65. Jasinska, E. J., G. G. Goss, P. L. Gillis, G. J. Van Der Kraak, J. Matsumoto, A. A. D. Machado, M. Giacomin, T. W. Moon, A. Massarsky, F. Gagne, M. R. Servos, J. Wilson, T. Sultana & C. D. Metcalfe, 2015. Assessment of biomarkers for contaminants of emerging concern on aquatic organisms downstream of a municipal wastewater discharge. Science of the Total Environment 530: 140–153.

    PubMed  Article  CAS  Google Scholar 

  66. Jiale, L. & L. Yingsen, 2009. http://agris.fao.org/agrisearch/search.do?recordID=US201301612025.

  67. Kolarevic, S., M. Kracun-Kolarevic, J. Kostic, J. Slobodnik, I. Liska, Z. Gacic, M. Paunovic, J. Knezevic-Vukcevic & B. Vukovic-Gacic, 2016. Assessment of the genotoxic potential along the Danube River by application of the comet assay on haemocytes of freshwater mussels: the joint Danube Survey 3. Science of the Total Environment 540: 377–385.

    CAS  PubMed  Article  Google Scholar 

  68. Langlet, D., L. Y. Alleman, P. D. Plisnier, H. Hughes & L. Andre, 2007. Manganese content records seasonal upwelling in Lake Tanganyika mussels. Biogeosciences 4: 195–203.

    CAS  Article  Google Scholar 

  69. Li, X. N., H. L. Song, W. Li, X. W. Lu & O. Nishimura, 2010. An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological Engineering 36: 382–390.

    Article  Google Scholar 

  70. Lopes-Lima, M., A. Teixeira, E. Froufe, A. Lopes, S. Varandas & R. Sousa, 2014. Biology and conservation of freshwater bivalves: past, present and future perspectives. Hydrobiologia 735: 1–13.

    Article  Google Scholar 

  71. Lorenz, S., F. Gabel, N. Dobra & M. T. Pusch, 2013. Modelling the effects of recreational boating on self-purification activity provided by bivalve mollusks in a lowland river. Freshwater Science 32: 82–93.

    Article  Google Scholar 

  72. Lydeard, C., R. H. Cowie, W. F. Ponder, A. E. Bogan, P. Bouchet, S. A. Clark, K. S. Cummings, T. J. Frest, O. Gargominy, D. G. Herbert, R. Hershler, K. E. Perez, B. Roth, M. Seddon, E. E. Strong & F. G. Thompson, 2004. The global decline of nonmarine mollusks. Bioscience 54: 321–330.

    Article  Google Scholar 

  73. McDowell, W. G., W. H. McDowell & J. E. Byers, 2016. Mass mortality of a dominant invasive species in response to an extreme climate event: implications for ecosystem function. Limnology and Oceanography. doi:10.1002/lno.10384.

    Google Scholar 

  74. McKinney, R. A., J. L. Lake, M. A. Charpentier & S. Ryba, 2002. Using mussel isotope ratios to assess anthropogenic nitrogen inputs to freshwater ecosystems. Environmental Monitoring and Assessment 74: 167–192.

    CAS  PubMed  Article  Google Scholar 

  75. Moore, J. W., 2006. Animal ecosystem engineers in streams. Bioscience 56: 237–246.

    Article  Google Scholar 

  76. Newton, T. J. & M. R. Bartsch, 2007. Lethal and sublethal effects of ammonia to juvenile Lampsilis mussels (Unionidae) in sediment and water-only exposures. Environmental Toxicology and Chemistry 26: 2057–2065.

    CAS  PubMed  Article  Google Scholar 

  77. Newton, T. J. & W. G. Cope, 2007. Biomarker responses of unionid mussels to environmental contaminants. In Farris, J. L. & J. H. Van Hassel (eds.), Freshwater Bivalve Ecotoxicology. CRC Press, Boca Raton: 257–284.

    Google Scholar 

  78. Newton, T. J., S. J. Zigler, J. T. Rogala, B. R. Gray & M. Davis, 2011. Population assessment and potential functional roles of native mussels in the Upper Mississippi River. Aquatic Conservation-Marine and Freshwater Ecosystems 21: 122–131.

    Article  Google Scholar 

  79. Newton, T. J., C. C. Vaughn, D. E. Spooner & M. Arts, 2013. Profiles of biochemical tracers in unionid mussels across a broad geographic range. Journal of Shellfish Research 32: 497–507.

    Article  Google Scholar 

  80. Novais, A., A. T. Souza, M. Ilarri, C. Pascoal & R. Sousa, 2015. From water to land: how an invasive clam may function as a resource pulse to terrestrial invertebrates. Science of the Total Environment 538: 664–671.

    CAS  PubMed  Article  Google Scholar 

  81. Othman, F., M. S. Islam, E. N. Sharifah, F. Shahrom-Harrison & A. Hassan, 2015. Biological control of streptococcal infection in Nile tilapia Oreochromis niloticus (Linnaeus, 1758) using filter-feeding bivalve mussel Pilsbryoconcha exilis (Lea, 1838). Journal of Applied Ichthyology 31: 724–728.

    Article  Google Scholar 

  82. Pigneur, L. M., E. Falisse, K. Roland, E. Everbecq, J. F. Deliege, J. S. Smitz, K. van Doninck & J. P. Descy, 2014. Impact of invasive Asian clams, Corbicula spp., on a large river ecosystem. Freshwater Biology 59: 573–583.

    Article  Google Scholar 

  83. Rafferty, J. & E. Peacock, 2008. The spread of shell tempering in the Mississippi Black Prairie. Southeastern Archeology 27: 253–264.

    Google Scholar 

  84. Raikow, D. F. & S. K. Hamilton, 2001. Bivalve diets in a midwestern U.S. stream: a stable isotope enrichment study. Limnology and Oceanography 46: 513–522.

    Article  Google Scholar 

  85. Ricciardi, A. & J. B. Rasmussen, 1999. Extinction rates of North American freshwater fauna. Conservation Biology 13: 1220–1222.

    Article  Google Scholar 

  86. Rocha, T. L., T. Gomes, V. S. Sousa, N. C. Mestre & M. J. Bebianno, 2015. Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: an overview. Marine Environmental Research 111: 74–88.

    CAS  PubMed  Article  Google Scholar 

  87. Ruffo, S. & P. M. Kareiva, 2009. Using science to assign value to nature. Frontiers in Ecology and the Environment 7: 3–3.

    Article  Google Scholar 

  88. Rypel, A. L., W. R. Haag & R. H. Findlay, 2009. Pervasive hydrologic effects on freshwater mussels and riparian trees in southeastern floodplain ecosystems. Wetlands 29: 497–504.

    Article  Google Scholar 

  89. Sansom, B., 2013. The influence of mussels on fish populations. MS thesis, Department of Biology, University of Oklahoma.

  90. Schone, B. R., E. Dunca, H. Mutvei & U. Norlund, 2004. A 217-year record of summer air temperature reconstructed from freshwater pearl mussels (M. margaritifera, Sweden). Quaternary Science Reviews 23: 1803–1816.

    Article  Google Scholar 

  91. Soto, D. & G. Mena, 1999. Filter-feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmon farming eutrophication. Aquaculture 171: 65–81.

    Article  Google Scholar 

  92. Sousa, R., S. Varandas, R. Cortes, A. Teixeira, M. Lopes-Lima, J. Machado & L. Guilhermino, 2012. Massive die-offs of freshwater bivalves as resource pulses. Annales De Limnologie-International Journal of Limnology 48: 105–112.

    Article  Google Scholar 

  93. Southwick, R. I. & A. J. Loftus (eds), 2003. Investigation and Monetary Values of Fish and Freshwater Mussel Kills. American Fisheries Society Special Publication No. 30. American Fisheries Society, Bethesda

  94. Spooner, D. E. & C. C. Vaughn, 2006. Context-dependent effects of freshwater mussels on the benthic community. Freshwater Biology 51: 1016–1024.

    CAS  Article  Google Scholar 

  95. Spooner, D. E. & C. C. Vaughn, 2008. A trait-based approach to species’ roles in stream ecosystems: climate change, community structure, and material cycling. Oecologia 158: 307–317.

    PubMed  Article  Google Scholar 

  96. Spooner, D. E. & C. C. Vaughn, 2012. Species’ traits and environmental gradients interact to govern primary production in freshwater mussel communities. Oikos 121: 403–416.

    Article  Google Scholar 

  97. Spooner, D. E., C. C. Vaughn & H. S. Galbraith, 2012. Species traits and environmental conditions govern the relationship between biodiversity effects across trophic levels. Oecologia 168: 533–548.

    PubMed  Article  Google Scholar 

  98. Spooner, D. E., P. C. Frost, H. Hillebrand, M. T. Arts, O. Puckrin & M. A. Xenopoulos, 2013. Nutrient loading associated with agriculture land use dampens the importance of consumer-mediated niche construction. Ecology Letters 16: 1115–1125.

    PubMed  Article  Google Scholar 

  99. Strayer, D. L., 1999. Use of flow refuges by unionid mussels in rivers. Journal of the North American Benthological Society 18: 468–476.

    Article  Google Scholar 

  100. Strayer, D. L., 2008. Freshwater Mussel Ecology: A Multifactor Approach to Distribution and Abundance. University of California Press, Berkeley.

    Google Scholar 

  101. Strayer, D. L., 2014. Understanding how nutrient cycles and freshwater mussels (Unionoida) affect one another. Hydrobiologia 735: 277–292.

    CAS  Article  Google Scholar 

  102. Strayer, D. L. & H. M. Malcom, 2007. Shell decay rates of native and alien freshwater bivalves and implications for habitat engineering. Freshwater Biology 52: 1611–1617.

    CAS  Article  Google Scholar 

  103. Strayer, D. L., N. F. Caraco, J. J. Cole, S. Findley & M. L. Pace, 1999. Transformation of freshwater ecosystems by bivalves. BioScience 49: 19–27.

    Article  Google Scholar 

  104. Thorp, J. H., M. D. Delong, K. S. Greenwood & A. F. Casper, 1998. Isotopic analysis of three food web theories in constricted and floodplain regions of a large river. Oecologia 117: 551–563.

    PubMed  Article  Google Scholar 

  105. Trant, A. J., W. Nijland, K. M. Hoffman, D. L. Mathews, D. McLaren, T. A. Nelson & B. M. Starzomski, 2016. Intertidal resource use over millennia enhances forest productivity. Nature Communications. doi:10.1038/ncomms12491.

    PubMed  PubMed Central  Google Scholar 

  106. Turek, K. A. & T. J. Hoellein, 2015. The invasive Asian clam (Corbicula fluminea) increases sediment denitrification and ammonium flux in 2 streams in the midwestern USA. Freshwater Science 34: 472–484.

    Article  Google Scholar 

  107. Tyrell, M. & D. J. Hornbach, 1998. Selective predation by muskrats on freshwater mussels in two Minnesota rivers. Journal of the North American Benthological Society 17: 301–310.

    Article  Google Scholar 

  108. Vanden Byllaardt, J. & J. D. Ackerman, 2014. Hydrodynamic habitat influences suspension feeding by unionid mussels in freshwater ecosystems. Freshwater Biology 59: 1187–1196.

    Article  Google Scholar 

  109. Vaughn, C. C., 2010. Biodiversity losses and ecosystem function in freshwaters: emerging conclusions and research directions. BioScience 60: 25–35.

    Article  Google Scholar 

  110. Vaughn, C. C. & C. C. Hakenkamp, 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46: 1431–1446.

    Article  Google Scholar 

  111. Vaughn, C. C. & D. E. Spooner, 2006. Unionid mussels influence macroinvertebrate assemblage structure in streams. Journal of the North American Benthological Society 25: 691–700.

    Article  Google Scholar 

  112. Vaughn, C. C., K. B. Gido & D. E. Spooner, 2004. Ecosystem processes performed by unionid mussels in stream mesocosms: species roles and effects of abundance. Hydrobiologia 527: 35–47.

    Article  Google Scholar 

  113. Vaughn, C. C., D. E. Spooner & H. S. Galbraith, 2007. Context-dependent species identity effects within a functional group of filter-feeding bivalves. Ecology 88: 1654–1662.

    PubMed  Article  Google Scholar 

  114. Vaughn, C. C., S. J. Nichols & D. E. Spooner, 2008. Community and foodweb ecology of freshwater mussels. Journal of the North American Benthological Society 27: 41–55.

    Article  Google Scholar 

  115. Vaughn, C. C., C. L. Atkinson & J. P. Julian, 2015. Multiple droughts lead to long-term losses in mussel-provided ecosystem services. Ecology and Evolution 5: 1291–1305.

    PubMed  PubMed Central  Article  Google Scholar 

  116. Wang, N., T. Augspurger, M. C. Barnhart, J. R. Bidwell, W. G. Cope, F. J. Dwyer, S. Geis, I. E. Greer, C. G. Ingersoll, C. M. Kane, T. W. May, R. J. Neves, T. J. Newton, A. D. Roberts & D. W. Whites, 2007. Intra- and interlaboratory variability in acute toxicity tests with glochidia and juveniles of freshwater mussels (Unionidae). Environmental Toxicology and Chemistry 26: 2029–2035.

    CAS  PubMed  Article  Google Scholar 

  117. Welker, M. & N. Walz, 1998. Can mussels control the plankton in rivers? A planktological approachapplying a Langrangian sampling strategy. Limnology and Oceanography 43: 753–762.

    Article  Google Scholar 

  118. Wen, Z. R., P. Xie & J. Xu, 2010. Mussel isotope signature as indicator of nutrient pollution in a freshwater eutrophic lake: species, spatial, and seasonal variability. Environmental Monitoring and Assessment 163: 139–147.

    CAS  PubMed  Article  Google Scholar 

  119. Zieritz, A., M. Lopes-Lima, A. E. Bogan, R. Sousa, S. Walton, K. Rahim, J. J. Wilson, P. Y. Ng, E. Froufe & S. McGowan, 2016. Factors driving changes in freshwater mussel (Bivalvia, Unionida) diversity and distribution in Peninsular Malaysia. Science of the Total Environment 571: 1069–1078.

    CAS  PubMed  Article  Google Scholar 

  120. Zieritz, A., A. E. Bogan, O. Klishko, T. Kondo, U. Kovitvadhi, S. Kovitvadhi, J. H. Lee, M. Lopes-Lima, J. M. Pfeiffer, R. Sousa, D. V. Tu, I. Vikhrev, & D. T. Zanatta, 2017. Diversity, biogeography and conservation status of freshwater mussels (Bivalvia: Unionida) in East and Southeast Asia. Hydrobiologia (in press)

  121. Zigler, S. J., T. J. Newton, J. J. Steuer, M. R. Bartsch & J. S. Sauer, 2008. Importance of physical and hydraulic characteristics to unionid mussels: a retrospective analysis in a reach of large river. Hydrobiologia 598: 343–360.

    Article  Google Scholar 

  122. Zimmerman, G. F. & F. A. de Szalay, 2007. Influence of unionid mussels (Mollusca: Unionidae) on sediment stability: an artificial stream study. Fundamental and Applied Limnology 168: 299–306.

    Article  Google Scholar 

Download references

Acknowledgements

This article stems from a presentation at the Second International Conference on the Biology and Conservation of Freshwater Bivalves. I thank the conference organizers and participants, and Antonio Castro, Carla Atkinson, Daniel Spooner, Kiza Gates, Daniel Allen, Heather Galbraith, Brandon Sansom, Thomas Parr, Traci Popejoy, and Brent Tweedy for thoughtful conversations and comments. Antonio Castro assisted with Table 1 and Andy Vaughn drew the figures. Comments from Ronaldo Sousa and an anonymous reviewer improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Caryn C. Vaughn.

Additional information

Guest editors: Manuel P. M. Lopes-Lima, Ronaldo G. Sousa, Lyuba E. Burlakova, Alexander Y. Karatayev & Knut Mehler / Ecology and Conservation of Freshwater Bivalves

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vaughn, C.C. Ecosystem services provided by freshwater mussels. Hydrobiologia 810, 15–27 (2018). https://doi.org/10.1007/s10750-017-3139-x

Download citation

Keywords

  • Biofiltration
  • Biomonitor
  • Habitat modification
  • Hotspot
  • Nutrient cycling and storage