Advertisement

Hydrobiologia

, Volume 795, Issue 1, pp 139–151 | Cite as

Multiple paternity and reproduction opportunities for invasive mosquitofish

  • Yuanqin Zeng
  • David Díez-del-Molino
  • Oriol Vidal
  • Manuel Vera
  • Jose-Luis García-MarínEmail author
Primary Research Paper

Abstract

The American mosquitofish, Gambusia holbrooki, is a worldwide invasive species. Multiple paternity might contribute to the invasive success of this species, by locally increasing effective population size. Using microsatellite loci, we examined multiple paternity of mosquitofish in Spanish basins. The percentage of gravid females that mated multiple times (greater than 60%), the average brood size (13.2), and the average number of sires per female brood (3–4) in the invaded basins were similar to values reported in America. Partial correlation showed that female size was not related to the number of sires independent of brood size. In addition, positive correlations between female size and the effective number of sires, or the reproductive skew were dependent on brood size. A relevant percentage of females mating with more than 3 sires suggested enhanced opportunities for transmission of diversity to subsequent generations in Spanish populations. Within broods, a dominant male often sired half of the brood. These results suggest multiple paternity is common in invaded populations. Together with known reproductive tactics of mosquitofish giving to any mature individual the chance for mating regardless of size or age, possibly multiple paternity facilitate the persistence of the genetic diversity of local populations.

Keywords

Gambusia holbrooki Invasive species Mosquitofish Microsatellite Multiple paternity 

Supplementary material

10750_2017_3125_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)

References

  1. Agrillo, C., M. Dadda & G. Serena, 2008. Choice of female groups by male mosquitofish (Gambusia holbrooki). Ethology 114: 479–488.CrossRefGoogle Scholar
  2. Alcaraz, C. & E. Garcia-Berthou, 2007. Life-history variation of invasive mosquitofish (Gambusia holbrooki) along a salinity gradient. Biological Conservation 139: 83–92.CrossRefGoogle Scholar
  3. Becher, S. A. & A. E. Magurran, 2004. Multiple mating and reproductive skew in Trinidadian guppies. Proceedings of the Royal Society B: Biological Sciences 271: 1009–1014.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Belk, M. C. & R. C. Tuckfiled, 2010. Changing costs of reproduction: age-based differences in reproductive allocation and escape performance in a livebearing fish. Oikos 119: 163–169.CrossRefGoogle Scholar
  5. Benejam, L., C. Alcaraz, P. Sasal, G. Simon-Levert & E. García-Berthou, 2009. Life history and parasites of the invasive mosquitofish (Gambusia holbrooki) along a latitudinal gradient. Biological Invasions 11: 2265–2277.CrossRefGoogle Scholar
  6. Billman, E. J. & M. C. Belk, 2014. Effect of age-based and environment-based cues on reproductive investment in Gambusia affinis. Ecology and Evolution 4: 1611–1622.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bisazza, A. & G. Marin, 1991. Male size and female mate choice in the eastern mosquitofish (Gambusia holbrooki: Poeciliidae). Copeia 1991(3): 730–735.CrossRefGoogle Scholar
  8. Bisazza, A., G. Vaccari & A. Pilastro, 2001. Female mate choice in a mating system dominated by male sexual coercion. Behavioral Ecology 12: 59–64.CrossRefGoogle Scholar
  9. Booksmythe, I., P. R. Y. Backwell & M. D. Jennions, 2013. Competitor size, male mating success and mate choice in eastern mosquitofish, Gambusia holbrooki. Animal Behaviour 85: 371–375.CrossRefGoogle Scholar
  10. Cabral, J. A. & J. C. Marques, 1999. Life history, population dynamics and production of eastern mosquitofish, Gambusia holbrooki (Pisces, Poeciliidae), in rice fields of the Lower Mondego River Valley, West Portugal. Acta Oecologica 20: 607–620.CrossRefGoogle Scholar
  11. Carlsson, J., 2007. The effect of family structure on the likelihood for kin-biased distribution: an empirical study of brown trout populations. Journal of Fish Biology 71(Supplement A): 98–110.CrossRefGoogle Scholar
  12. Carmona-Catot, G., J. Benito & E. García-Berthou, 2011. Comparing latitudinal and upstream-downstream gradients: life history traits of invasive mosquitofish. Diversity and Distributions 17: 214–224.CrossRefGoogle Scholar
  13. Chesser, R. K., M. W. Smith & M. H. Smith, 1984. Biochemical genetics of mosquitofish III. Incidence and significance of multiple insemination. Genetica 64: 77–81.CrossRefGoogle Scholar
  14. Deacon, A. E., I. W. Ramnarine & A. E. Magurran, 2011. How reproductive ecology contributes to the spread of a globally invasive fish. PLoS ONE 6(9): e24416.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Deaton, R., 2008. Factors influencing male mating behaviour in Gambusia affinis (Baird & Girard) with a coercive mating system. Journal of Fish Biology 72: 1607–1622.CrossRefGoogle Scholar
  16. Diez-del-Molino, D., G. Carmona-Catot, R. M. Araguas, O. Vidal, N. Sanz, E. García-Berthou & J. L. García-Marín, 2013. Gene flow and maintenance of genetic diversity in invasive mosquitofish (Gambusia holbrooki). PLoS ONE 8(12): e82501.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Díez-del-Molino, D., R. M. Araguas, M. Vera, O. Vidal, N. Sanz & J.-L. García-Marín, 2016. Temporal genetic dynamics among mosquitofish (Gambusia holbrooki) populations in invaded watersheds. Biological Invasions 18: 841–855.CrossRefGoogle Scholar
  18. Eales, J., R. S. Thorpe & A. Malhotra, 2010. Colonization history and genetic diversity: adaptive potential in early stage invasions. Molecular Ecology 19: 2858–2869.CrossRefPubMedGoogle Scholar
  19. Edwards, T. M., H. D. Miller, G. Toft & L. J. Guillette, 2013. Seasonal reproduction of male Gambusia holbrooki (eastern mosquitofish) from two Florida lakes. Fish Physiology and Biochemistry 39: 1165–1180.CrossRefPubMedGoogle Scholar
  20. Evans, J. P. & A. E. Magurran, 2000. Multiple benefits of multiple mating in guppies. Proceedings of the National Academy of Sciences of the United States of America 97: 10074–10076.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Evans, J. P. & A. E. Magurran, 2001. Patterns of sperm precedence and predictors of paternity in the Trinidadian guppy. Proceedings of the Royal Society B: Biological Sciences 268: 719–724.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fernandez-Delgado, C. & S. Rossomanno, 1997. Reproductive biology of the mosquitofish in a permanent natural lagoon in south-west Spain: two tactics for one species. Journal of Fish Biology 51: 80–92.CrossRefPubMedGoogle Scholar
  23. Fraile, B., F. J. Sáez, C. A. Vicentini, A. González, M. P. de Miguel & R. Paniagua, 1994. Effects of Temperature and Photoperiod on the Gambusia affinis holbrooki Testis during the Spermatogenesis period. Copeia 1994: 216–221.CrossRefGoogle Scholar
  24. Greene, J. M. & K. L. Brown, 1991. Demographic and genetic characteristics of multiply inseminated female mosquitofish (Gambusia affinis). Copeia 1991: 434–444.CrossRefGoogle Scholar
  25. Hayden, M. J., T. M. Nguyen, A. Waterman & K. J. Chalmers, 2008. Multiplex-ready PCR: a new method for multiplexed SSR and SNP genotyping. BMC Genomics 9: 80.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hoysak, D. J. & J.-G. J. Godin, 2007. Repeatability of male mate choice in the mosquitofish, Gambusia holbrooki. Ethology 113: 1007–1018.CrossRefGoogle Scholar
  27. Johnson, A. M., G. Chappell, A. C. Price, F. H. Rodd, R. Olendorf & K. A. Hughes, 2010. Inbreeding depression and inbreeding avoidance in a natural population of guppies (Poecilia reticulata). Ethology 116: 448–457.CrossRefGoogle Scholar
  28. Jones, A. G., 2005. GERUD 2.0: a computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Molecular Ecology Notes 5: 708–711.CrossRefGoogle Scholar
  29. Jones, O. & J. Wang, 2009. COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources 10: 551–555.CrossRefPubMedGoogle Scholar
  30. Kalinowski, S. T., M. L. Taper & T. C. Marshall, 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16: 1099–1106.CrossRefPubMedGoogle Scholar
  31. Koya, Y. & E. Kamiya, 2000. Environmental regulation of annual reproductive cycle in the mosquitofish, Gambusia affinis. The Journal of Experimental Zoology 286: 204–211.CrossRefPubMedGoogle Scholar
  32. Marsh-Matthews, E., M. Brooks, R. Deaton & H. Tan, 2005. Effects of maternal and embryo characteristics on post-fertilization provisioning in fishes of the genus Gambusia. Oecologia 144: 12–24.CrossRefPubMedGoogle Scholar
  33. Neff, B. D. & T. E. Pitcher, 2002. Assessing the statistical power of genetic analyses to detect multiple mating in fishes. Journal of Fish Biology 61: 739–750.CrossRefGoogle Scholar
  34. Neff, B. D., T. E. Pitcher & I. W. Ramnarine, 2008. Inter-population variation in multiple paternity and reproductive skew in the guppy. Molecular Ecology 17: 2975–2984.CrossRefPubMedGoogle Scholar
  35. Norazmi-Lokman, N. H., G. J. Purser & J. G. Patil, 2016. Gravid spot predicts developmental progress and reproductive output in a livebearing fish, Gambusia holbrooki. PLoS ONE 11(1): e0147711.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ojanguren, A. F., J. P. Evans & A. E. Magurran, 2005. Multiple mating influences offspring size in guppies. Journal of Fish Biology 67: 1184–1188.CrossRefGoogle Scholar
  37. Pearse, D. E. & E. C. Anderson, 2009. Multiple paternity increases effective population size. Molecular Ecology 18: 3124–3127.CrossRefPubMedGoogle Scholar
  38. Pérez-Bote, J. & M. López, 2005. Life-history pattern of the introduced eastern mosquitofish, Gambusia holbrooki (Baird & Girard, 1854), in a Mediterranean-type river: the River Guadiana (SW Iberian Peninsula). Italian Journal of Zoology 72: 241–248.CrossRefGoogle Scholar
  39. Pilastro, A., E. Giacomello & A. Bisazza, 1997. Sexual selection for small size in male mosquitofish (Gambusia holbrooki). Proceedings of the Royal Society B: Biological Sciences 264: 1125–1129.CrossRefPubMedCentralGoogle Scholar
  40. Pitcher, T. E., B. D. Neff, F. H. Rodd & L. Rowe, 2003. Multiple mating and sequential mate choice in guppies: females trade up. Proceedings of the Royal Society B 270: 1623–1629.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Purcell, K. M., S. L. Lance, K. L. Jones & C. A. Stockwell, 2011. Ten novel microsatellite markers for the western mosquitofish Gambusia affinis. Conservation Genetic Resources 3: 361–363.CrossRefGoogle Scholar
  42. Pyke, G. H., 2005. A review of the biology of Gambusia affinis and G. holbrooki. Reviews in Fish Biology and Fisheries 15: 339–365.CrossRefGoogle Scholar
  43. Rehage, J. S. & A. Sih, 2004. Dispersal behavior, boldness, and the link to invasiveness: a comparison of four Gambusia species. Biological Invasions 6: 379–391.CrossRefGoogle Scholar
  44. Reznick, D., E. Schultz, S. Morey & D. Roff, 2006. On the virtue of being the first born: the influence of date of birth on fitness in the mosquitofish, Gambusia affinis. Oikos 114: 135–147.CrossRefGoogle Scholar
  45. Ruesink, J. L., 2005. Global analysis of factors affecting the outcome of freshwater fish introductions. Conservation Biology 19: 1883–1893.CrossRefGoogle Scholar
  46. Sanz, N., R. M. Araguas, O. Vidal, D. Diez-del-Molino, R. Fernández-Cebrián & J.-L. García-Marín, 2013. Genetic characterization of the invasive mosquitofish (Gambusia spp.) introduced to Europe: population structure and colonization routes. Biological invasions 15: 2333–2346.CrossRefGoogle Scholar
  47. Sefc, K. M. & S. Koblmüller, 2009. Assessing the parent numbers from offspring genotypes: the importance of marker polymorphism. Journal of Heredity 100: 197–205.CrossRefPubMedGoogle Scholar
  48. Simmons, L. W., M. Beveridge & J. P. Evans, 2008. Molecular evidence for multiple paternity in a feral population of green swordtails. Journal of Heredity 99: 610–615.CrossRefPubMedGoogle Scholar
  49. Spencer, C. C., C. A. Chlan, J. E. Neigel, K. T. Scribner, M. C. Wooten & P. L. Leberg, 1999. Polymorphic microsatellite markers in the western mosquitofish, Gambusia affinis. Molecular Ecology 8: 157–158.PubMedGoogle Scholar
  50. Stockwell, C. A. & S. C. Weeks, 1999. Translocations and rapid evolutionary responses in recently established populations of western mosquitofish (Gambusia affinis). Animal Conservation 2: 103–110.CrossRefGoogle Scholar
  51. Trexler, J. C., J. Travis & A. Dinep, 1997. Variation among populations of the sailfin molly in the rate of concurrent multiple paternity and its implications for mating-system evolution. Behavioral Ecology and Sociobiology 40: 297–305.CrossRefGoogle Scholar
  52. Vargas, M. J. & A. de Sostoa, 1996. Life history of Gambusia holbrooki (Pisces, Poeciliidae) in the Ebro delta (NE Iberian Peninsula). Hydrobiologia 341: 215–224.CrossRefGoogle Scholar
  53. Vera, M., D. Díez-del-Molino & J. L. García-Marín, 2016. Genomic survey provides insights into the evolutionary changes that occurred during European expansion of the invasive mosquitofish (Gambusia holbrooki). Molecular Ecology 25: 1089–1105.CrossRefPubMedGoogle Scholar
  54. Vidal, O., E. García-Berthou, P. A. Tedesco & J.-L. García-Marín, 2009. Origin and genetic diversity of mosquitofish (Gambusia holbrooki) introduced to Europe. Biological Invasions 12: 841–851.CrossRefGoogle Scholar
  55. Wang, J., 2004. Sibship reconstruction from genetic data with typing errors. Genetics 166: 1963–1979.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wang, J., 2013. An improvement on the maximum likelihood reconstruction of pedigrees from marker data. Heredity 111: 165–174.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zane, L., W. S. Nelson, A. G. Jones & J. C. Avise, 1999. Microsatellite assessment of multiple paternity in natural populations of a live-bearing fish, Gambusia holbrooki. Journal of Evolutionary Biology 12(1): 61–69.CrossRefGoogle Scholar
  58. Zarev, V. Y., 2012. Some life-history traits of Gambusia holbrooki (Pisces: Poeciliidae) from Bulgaria. Acta Zoologica Bulgarica 64(3): 263–272.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.LIG, Departament de Biologia, Edifici AC-LEARUniversitat de GironaGironaSpain
  2. 2.School of Life ScienceSouthwest UniversityChongqingChina
  3. 3.Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden

Personalised recommendations