Skip to main content
Log in

Recovery of submersed vegetation in a high mountain oligotrophic soft-water lake over two decades after impoundment

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Recovery of the submersed vegetation is a target for the management of soft-water shallow lakes if they are to meet water quality and biodiversity standards. Knowledge of patterns of macrophyte space occupation and time to recovery is poor and mostly restricted to free floating species or riparian vegetation. Here we use pre- and post-impact monitoring data over 20 years showing the evolution of submersed aquatic vegetation of lake Baciver (Pyrenees), and develop models to infer space occupation and time to recovery. We use pre-impact macrophyte distribution in relation to bathymetry-derived data to fit logistic models to further simulate lake equilibrium scenarios. Depth and slope were found to be the best predictors, and models suggested that an assemblage dominated by Sparganium angustifolium was, at time of this study, over 95% of its potential distribution area. A dense, newly grown monospecific Isoetes lacustris population occupied <10% of its potential area and model projections suggest that it will take decades to recover. An I. lacustris residual population remains below the estimated depth threshold for survival and is bound to disappear. The lake appears to evolve towards a new steady-state where the current lake hypsography promotes the expansion of algae (Nitella sp.) over angiosperms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arts, G. H. P., 2002. Deterioration of atlantic soft water macrophyte communities by acidification, eutrophication and alkalinisation. Aquatic Botany 73: 373–393.

    Article  CAS  Google Scholar 

  • Azzella, M. M., R. Bolpagni & A. Oggioni, 2014. A preliminary evaluation of lake morphometric traits influence on colonization depth of Aquatic plants. Journal of Limnology 73(2): 400–406.

    Article  Google Scholar 

  • Baastrup-Spohr, L., K. J. Sand-Jensen, S. V. Nicolajsen & H. H. Bruun, 2015. From soaking wet to bone dry: predicting plant community composition along a steep hydrological gradient. Journal of Vegetation Science 26(4): 610–630.

    Article  Google Scholar 

  • Ballesteros, E., E. Gacia & L. Camarero, 1989. Composition, distribution and biomass of benthic macrophyte communities from lake Baciver, a Spanish alpine lake in the central Pyrenees. Annales de Limnologie 25(2): 177–184.

    Article  Google Scholar 

  • Bellemakers, M. J. S., M. Maessen, G. M. Verheggen & J. G. M. Roelofs, 1996. Effects of liming on shallow acidified moorland pools: a culture and a seed bank experiment. Aquatic Botany 54(1): 1996.

    Article  Google Scholar 

  • Bivand, R. S., E. Pebesma & V. Gómez-Rubio, 2013. Applied Spatial Data Analysis with R, 2nd edn. UseR! Series. Springer, New York.

  • Brederveld, R. J., S. C. Jähnig, A. W. Lorenz, S. Brunzel & M. B. Soons, 2011. Dispersal as a limiting factor in the colonization of restored mountain streams by plants and macroinvertebrates. Journal of Applied Ecology 48: 1241–1250.

    Article  Google Scholar 

  • Brouwer, E. & J. G. M. Roelofs, 2001. Degraded soft-water lakes: possibilities for restoration. Restoration Ecology 9: 155–166.

    Article  Google Scholar 

  • Brun, F. G., F. Cummaudo, I. Olive, J. J. Vergara & J. L. Perez-Llorens, 2007. Clonal extent, apical dominance and networking features in the phalanx angiosperm Zostera noltii Hornem. Marine Biology 151(5): 1917–1927.

    Article  Google Scholar 

  • Catalán, J., E. Ballesteros, E. Gacia, A. Palau & L. Camarero, 1993. Chemical composition of disturbed and undisturbed high-mountain lakes in the Pyrenees: a reference for acidified sites. Water Research 27(1): 133–141.

    Article  Google Scholar 

  • Catalan, J., G. Barbieri, F. Bartumeus, P. Bitušík, P. Botev, A. Brancelj, D. Cogălniceanu, M. Manca, A. Marchetto, N. Ognjanova-Rumenova, S. Pla, M. Rieradevall, S. Sorvari, E. Štefková, E. Stuchlík & M. Ventura, 2009. Ecological thresholds in European alpine lakes. Freshwater Biology 54(12): 2494–2517.

    Article  CAS  Google Scholar 

  • Chappuis, E. M., A. Lumbreras, E. Ballesteros & E. Gacia, 2015. Deleterious interaction of light impairment and organic matter enrichment on Isoetes lacustris (Lycopodiophyta, Isoetales). Hydrobiologia 760(1): 145–158.

    Article  CAS  Google Scholar 

  • Cutler, D. R., T. C. Edwards, K. H. Beard, A. Cutler, K. T. Hess, J. Gibson & J. J. Lawler, 2007. Random forests for classification in ecology. Ecology 88(11): 2783–2792.

  • Dormann, C. F., 2007. Assessing the validity of autologistic regression. Ecological Modelling 207(2): 234–242.

    Article  Google Scholar 

  • Dormann, C. F., J. M. McPherson, M. B. Araújo, R. Bivand, J. Bolliger, G. Carl, R. G. Davies, A. Hirzel, W. Jetz, W. D. Kissling, I. Kühn, R. Ohlemüller, P. R. Peres-Neto, B. Reineking, B. Schröder, F. M. Schurr & R. Wilson, 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30(5): 609–628.

    Article  Google Scholar 

  • Duarte, C. M. & J. Kalff, 1986. Littoral slope as a predictor of the maximum biomass of submerged macrophyte communities. Limnology and Oceanography 31(5): 1072–1080.

    Article  Google Scholar 

  • Farmer, A. M. & D. H. M. Spence, 1986. The growth strategies and distribution of isoetids in Scottish freshwater lochs. Aquatic Botany 26: 247–258.

    Article  Google Scholar 

  • Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognition Letters 27: 861–874.

    Article  Google Scholar 

  • Gacia, E., 1993. Ecologia dels macròfits submergits dels estanys del Pirineu: estructura i dinàmica de les poblacions de l’estany de Baciver (Vall d’Aran). PhD Thesis, Ecology Department of the University of Barcelona: 176 pp.

  • Gacia, E. & E. Ballesteros, 1993. Population and individual variability of Isoetes lacustris L. with depth in a Pyrenean Lake. Aquatic Botany 46: 35–47.

    Article  Google Scholar 

  • Gacia, E. & E. Ballesteros, 1994. Production of Isoetes lacustris in a Pyrenean lake: seasonality and ecological factors involved in the growing period. Aquatic Botany 48: 77–89.

    Article  Google Scholar 

  • Gacia, E. & E. Ballesteros, 1996. The effect of increased water level on Isoetes lacustris L. in Lake Baciver, Spain. Journal of Aquatic Plant Management 34: 57–59.

    Google Scholar 

  • Gacia, E. & E. Ballesteros, 1998. Changes in the water column, the sediment and the macrophyte populations after the building up of a dam in Lake Baciver (Central Pyrennes). Oecologia Aquatica 11: 55–66.

    Google Scholar 

  • Gacia, E., E. M. Chappuis, A. Lumbreras, J. L. Riera & E. Ballesteros, 2009. Functional diversity of macrophyte communities within and between Pyrenean Lakes. Journal of Limnology 68(1): 25–36.

    Article  Google Scholar 

  • Grace, J. B., 1993. The adaptative significance of clonal reproduction in angiosperms: an aquatic perspective. Aquatic Botany 44: 159–180.

    Article  Google Scholar 

  • GRASS Development Team, 2015. Geographic Resources Analysis Support System (GRASS) Software, Version 7.0. Open Source Geospatial Foundation. http://grass.osgeo.org.

  • Helsten, S., 2002. Aquatic macrophytes as indicators of water-level regulation in Northern Finland. Proceedings – International Association of Theoretical and Applied Limnology 28: 601–606.

    Google Scholar 

  • Hickey, R. J., 1986. Isoetes megaspore surface morphology: nomenclature, variation and 468 systematic importance. American Fern Journal 76: 1–16.

    Article  Google Scholar 

  • Hijmans, J. R., 2014. Raster: Geographic Data Analysis and Modeling. R Package Version 2.3-0. http://CRAN.R-project.org/package=raster.

  • Howard, W. C., A. M. Schwarz & W. F. Vincent, 1995. Deep-water aquatic plant communities in an oligotrophic lake: physiological responses to variable light. Freshwater Biology 33(1): 91–102.

    Article  Google Scholar 

  • Khanna, S., M. J. Santos, E. L. Hestir & S. L. Ustin, 2012. Plant community dynamics relative to the changing distribution of a highly invasive species, Eichhornia crassipes: a remote sensing perspective. Biological Invasions 14: 717–733.

    Article  Google Scholar 

  • Kolada, A., 2014. The effect of lake morphology on aquatic vegetation development and changes under the influence of eutrophication. Ecological Indicators 38: 282–293.

    Article  CAS  Google Scholar 

  • Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444(1–3): 71–84.

  • Pollux, B. J. A., E. Verbruggen, J. J. Van Groenendael & N. J. Ouborg, 2006. Intraspecific variation of seed floating ability in Sparganium emersum suggests a bimodal dispersal strategy. Aquatic Botany 90: 199–203.

    Article  Google Scholar 

  • Portielje, R. & D. T. Van der Molen, 1998. Trend-analysis of eutrophication variables in lakes in The Netherlands. Water Science and Technology 37: 235–240.

    Article  CAS  Google Scholar 

  • Pulido, C., E. C. H. E. T. Lucassen, O. Pedersen & J. G. M. Roelofs, 2011a. Influence of quantity and lability of sediment organic matter on the biomass of two isoetids, Littorella uniflora and Echinodorus repens. Freshwater Biology 56: 939–951.

    Article  Google Scholar 

  • Pulido, C., D. J. H. Keijsers, E. C. H. E. T. Lucassen, O. Perdersen & J. G. M. Roelofs, 2011b. Elevated alkalinity and sulfate adversely affect the aquatic macrophyte Lobelia dortmanna. Aquatic Ecology 46: 283–295.

    Article  Google Scholar 

  • Pulido, C., J. L. Riera, E. Ballesteros, E. Chappuis & E. Gacia, 2015. Predicting aquatic macrophyte occurrence in soft-water oligotrophic lakes (Pyrenees mountain range). Journal of Limnology 74(1): 143–154.

    Google Scholar 

  • QGIS Development Team, 2014. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org/.

  • R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.

  • Riis, T., 2008. Dispersal and colonization of plants in lowland streams: success rates and bottlenecks. Hydrobiologia 596: 341–351.

    Article  Google Scholar 

  • Robin, X., N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.C. Sanchez & M. Müller, 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12: 77.

  • Rørslett, B., 1984. Environmental factors and aquatic macrophyte response in regulated lakes – a statistical approach. Aquatic Botany 19: 199–220.

    Article  Google Scholar 

  • Rørslett, B., 1989. An integrated approach to hydropower impact assessment II. Submerged macrophytes in some Norwegian hydro-electric lakes. Hydrobiologia 175: 65–82.

    Article  Google Scholar 

  • Rørslett, B. & S. W. Johansen, 1996. Remedial measures connected with aquatic macrophytes in Norwegian regulated rivers and reservoirs. Regulated Rivers: Research & Management 12: 509–522.

    Article  Google Scholar 

  • Sand Jensen, K. J. & T. V. Madsen, 1992. Patch dynamics of the stream macrophyte, Callitriche cophocarpa. Freshwater Biology 27: 277–282.

    Article  Google Scholar 

  • Sand-Jensen, K., T. Riis, O. Vestergaard & S. E. Larsen, 2000. Macrophyte decline in Danish lakes and streams over the past 100 years. Journal of Ecology 88: 1030–1040.

    Article  Google Scholar 

  • Sintes, T., N. Marbà & C. M. Duarte, 2006. Modeling nonlinear seagrass clonal growth: assessing the efficiency of space occupation across the seagrass flora. Estuaries and Coasts 29(1): 72–80.

    Article  Google Scholar 

  • Vila-Costa, M., C. Pulido, E. M. Chappuis, A. Calviño, E. Casamayor & E. Gacia, 2016. Macrophyte landscape modulates lake ecosystem-level nitrogen losses through tightly coupled plant-microbe interactions. Limnology and Oceanography 61(1): 78–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

E.G. and E.C. are members of the Environmental Changes Ecology Group (GECA), an Excellence Research Group (SGR-DGR) of the Generalitat de Catalunya (Ref. 2014 SGR 1249. 2014–2017). This study was funded by the Red de Parques Nacionales of the Spanish Ministry of the Environment (PN I+D+I ref. 118/2003 and AQUAREST ref. OAPN 212/2010) and Intramural CSIC (Consejo Superior de Investigaciones Científicas) ref. 0065. The authors are thankful to Lluís Camarero for help processing lake nutrient analysis and to Ana Lumbreras for field and lab assistance during the summer of 2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esperança Gacia.

Additional information

Handling editor: André Padial

Electronic supplementary material

Below is the link to the electronic supplementary material.

Annex 1 (DOC 351 kb)

Annex 2 (DOC 83 kb)

Annex 3 (DOCX 443 kb)

Annex 4 (DOCX 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riera, J.L., Ballesteros, E., Pulido, C. et al. Recovery of submersed vegetation in a high mountain oligotrophic soft-water lake over two decades after impoundment. Hydrobiologia 794, 139–151 (2017). https://doi.org/10.1007/s10750-017-3087-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3087-5

Keywords

Navigation