, Volume 794, Issue 1, pp 109–123 | Cite as

Changes in CO2 dynamics related to rainfall and water level variations in a subtropical lake

  • Denise TonettaEmail author
  • Peter Anton Staehr
  • Mauricio Mello Petrucio
Primary Research Paper


We investigated the implications of low rainfall and reduced water level for changes in nutrients and chlorophyll-a in a subtropical lake, and how these changes affected levels and atmospheric fluxes of CO2. Based on nine consecutive years of monthly monitoring of pH, alkalinity, oxygen, and temperature, we calculated the pCO2 and CO2 flux and related these to environmental drivers. Variations in annual rainfall, with extreme low levels along 2012–2014 caused the water level to decrease up to 1 m. Low water levels were associated with higher concentrations of chlorophyll-a and organic carbon as well as reduced water transparency. Under these conditions, pCO2 increased and the lake was predominantly a source of CO2 to the atmosphere. Applying a generalized linear model, we found that water temperature, water column stability, and water level were linked to pCO2. The influences of predicted regional changes in rainfall associated with low water levels will according to our model further deteriorate the water quality and enhance CO2 emissions from the lake to the atmosphere.


Rainfall Monitoring, climate changes Water quality Peri Lake 



We are grateful to staff from Laboratory of Freshwater Ecology from Federal University of Santa Catarina (UFSC, for collaborative efforts related to the samplings. We thank the ICEA (Instituto de Controle do Espaço Aéreo) and CASAN (Companhia Catarinense de Água e Esgoto) for providing rainfall and water level data, respectively. We thank the FLORAM (Fundação Municipal do Meio Ambiente de Florianópolis), LAPAD – UFSC (Laboratório de Biologia e Cultivo de Peixes de Água Doce) and the PPGECO – UFSC (Programa de pós-graduação em Ecologia) for providing assistance for field and laboratory equipments. We also would like to thank Eduardo Giehl for the help with statistical analyses, Izidro Souza-Filho for helping to improve the figure 1 and three anonymous reviewers who provided insights on an earlier version of the manuscript. This study was funded by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and the first author was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and COCLake Project (No. 88881.030499/2013-01).


  1. Abril, G., S. Bouillon, F. Darchambeau, C. R. Teodoru, T. R. Marwick, F. Tamooh, F. O. Omengo, N. Geeraert, L. Deirmendjian, P. Polsenaere & A. V. Borges, 2015. Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12: 67–78.CrossRefGoogle Scholar
  2. Almeida, R. M., G. N. Nóbrega, P. C. Junger, A. V. Figueiredo, A. S. Andrade, C. G. B. Moura, D. Tonetta, E. S. Oliveira Jr., F. Araújo, F. Rust, J. M. Piñeiro-Guerra, J. R. Mendonça Jr., L. R. Medeiros, L. P. Silva, M. Miranda, M. R. A. Costa, M. L. Melo, R. Nobre, T. Benevides, F. Roland, J. de Klein, N. O. Barros, R. Mendonça, V. Becker, V. Huszar & S. Kosten, 2016. High primary production contrasts with intense carbon emission in a eutrophic tropical reservoir. Frontiers in Microbiology. doi: 10.3389/fmicb.2016.00717.Google Scholar
  3. Bertilsson, S. & L. Tranvik, 2000. Photochemical transformation of dissolved organic matter in lakes. Limnology and Oceanography 45: 753–762.CrossRefGoogle Scholar
  4. Brighenti, L. S., P. A. Staehr, L. M. Gagliardi, L. P. M. Brandão, E. C. Elias, N. A. S. T. Mello, F. A. R. Barbosa & J. F. Bezerra-Neto, 2015. Seasonal changes in metabolic rates of two tropical lakes in the Atlantic Forest of Brazil. Ecosystems 18: 589–604.CrossRefGoogle Scholar
  5. Cardoso, L. S. & D. Motta-Marques, 2009. Hydrodynamics-driven plankton community in a shallow lake. Aquatic Ecology 43: 73–84.CrossRefGoogle Scholar
  6. Catalán, N., R. Marcé, D. N. Kothawala & L. J. Tranvik, 2016. Organic carbon decomposition rates controlled by water retention time across inland waters. Nature Geoscience. doi: 10.1038/NGEO2720.Google Scholar
  7. Cole, J. J. & N. F. Caraco, 1998. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnology and Oceanography 43: 647–656.CrossRefGoogle Scholar
  8. Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.CrossRefGoogle Scholar
  9. Crawley, M. J., 2012. The R Book. Wiley, Hoboken, NJ: 1076 pp.Google Scholar
  10. Crusius, J. & R. Wanninkhof, 2003. Gas transfer velocities measured at low wind speed over a lake. Limnology and Oceanography 48: 1010–1017.CrossRefGoogle Scholar
  11. De’ath, G. & K. F. Fabricius, 2000. Classification and regression trees: a powerful yet simple. Ecology 81: 3178–3192.CrossRefGoogle Scholar
  12. Dlugokencky, E. & P. Tans. 2016. National Oceanic and Atmospheric Administration – NOAA/ESRL.
  13. Duarte, C. M. & Y. T. Prairie, 2005. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8: 862–870.CrossRefGoogle Scholar
  14. Dugan, H. A., R. I. Woolway, A. B. Santoso, J. R. Corman, A. Jaimes, E. R. Nodine, V. P. Patil, J. A. Zwart, J. A. Brentrup, A. L. Hetherington, S. K. Oliver, J. S. Read, K. M. Winters, P. C. Hanson, E. K. Read, L. A. Winslow & K. C. Weathers, 2016. Consequences of gas flux model choice on the interpretation of metabolic balance across 15 lakes. Inland Waters 6: 581–592.Google Scholar
  15. Eyto, E., E. Jennings, E. Ryder, K. Sparber, M. Dillane, C. Dalton & R. Poole, 2016. Response of a humic lake ecosystem to an extreme precipitation event: physical, chemical, and biological implications. Inland Waters 6: 483–498.Google Scholar
  16. Fauchereau, N., S. Trzaska, M. Rouault & Y. Richard, 2003. Rainfall variability and changes in Southern Africa during the 20th century in the global warming context. Natural Hazards 29: 139–154.CrossRefGoogle Scholar
  17. Fontes, M. L. S., D. Tonetta, L. Dalpaz, R. V. Antônio & M. M. Petrucio, 2013. Dynamics of planktonic prokaryotes and dissolved carbon in a subtropical coastal lake. Frontiers in Microbiology 4: 71.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fontes, M. L. S., H. Marotta, S. MacIntyre & M. M. Petrucio, 2015. Inter- and intra-annual variations of pCO2 and pO2 in a freshwater subtropical coastal lake. Inland Waters 5: 107–116.CrossRefGoogle Scholar
  19. Geraldes, A. M. & C. George, 2012. Limnological variations of a deep reservoir in periods with distinct rainfall patterns. Acta Limnologica Brasiliensia 24: 417–426.CrossRefGoogle Scholar
  20. Gómez-Gener, L., D. von Schiller, R. Marcé, M. Arroita, J. P. Casas-Ruiz, P. A. Staehr, V. Acuña, S. Sabater & B. Obrador, 2016. Low contribution of internal metabolism to CO2 emissions along lotic and lentic environments of a Mediterranean fluvial network. Journal of Geophysical Research Biogeosciences. doi: 10.1002/2016JG003549.Google Scholar
  21. Granéli, W., M. Lindell & L. Tranvik, 1996. Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnology and Oceanography 41: 698–706.CrossRefGoogle Scholar
  22. Hennemann, M. C. & M. M. Petrucio, 2016. High chlorophyll a concentration in a low nutrient context: discussions in a subtropical lake dominated by Cyanobacteria. Journal of Limnology. doi: 10.4081/jlimnol.2016.1347.Google Scholar
  23. Hyndman, R. J., 2016. forecast: Forecasting Functions for Time Series and Linear Models. R Package Version 7.1.
  24. IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Pachauri, R. K. & L. A. Meyer (eds), Core Writing Team. IPCC, Geneva.Google Scholar
  25. Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Nõges, P. Nõges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. F. Menezes, F. R. S. Freitas, M. Kernan, M. Søndergaard & M. Beklioğlu, 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227.CrossRefGoogle Scholar
  26. Jones, J. R., D. V. Obrecht, J. L. Graham, M. B. Balmer, C. T. Filstrup & J. A. Downing, 2016. Seasonal patterns in carbon dioxide in 15 mid-continent (USA) reservoirs. Inland Waters 6: 265–272.CrossRefGoogle Scholar
  27. Jonsson, A., J. Aberg, A. Lindroth & M. Jansson, 2008. Gas transfer rate and CO2 flux between an unproductive lake and the atmosphere in northern Sweden. Journal of Geophysical Research 113: G04006.Google Scholar
  28. Kortelainen, P., J. T. Huttunen, T. Väisänen, T. Mattsson, P. Karjalainen & J. Martikainen, 2000. CH4, CO2 and N2O supersaturation in 12 Finnish lakes before the ice melt. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 27: 1410–1414.Google Scholar
  29. Kosten, S., F. Roland, D. M. L. Motta Marques, E. H. Van Nes, N. Mazzeo, L. S. L. Sternberg, M. Scheffer & J. J. Cole, 2010. Climate-dependent CO2 emissions from lakes. Global Biogeochemical Cycles 24: GB2007.CrossRefGoogle Scholar
  30. Leira, M. & M. Cantonati, 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia 613: 171–184.CrossRefGoogle Scholar
  31. Lisboa, L. K., A. L. L. Silva, A. E. Siegloch, J. F. J. Gonçalves & M. M. Petrucio, 2014. Temporal dynamics of allochthonous coarse particulate organic matter in a subtropical Atlantic Rainforest Brazilian stream. Marine & Freshwater Research 66: 674–680.CrossRefGoogle Scholar
  32. Lorenzen, C. J., 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.CrossRefGoogle Scholar
  33. Maberly, S. C., P. A. Barker, A. W. Stott & M. M. De Ville, 2012. Catchment productivity controls CO2 emissions from lakes. Nature Climate Change 3: 391–394.CrossRefGoogle Scholar
  34. MacIntyre, S., A. Jonsson, M. Jansson, J. Aberg, D. E. Turney & S. D. Miller, 2010. Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophysical Research Letters 37: L24604.CrossRefGoogle Scholar
  35. Marcé, R., B. Obrador, J. A. Morguí, J. L. Riera, P. López & J. Armengol, 2015. Carbonate weathering as a driver of CO2 supersaturation in lakes. Nature Geoscience 8: 107–111.CrossRefGoogle Scholar
  36. Marotta, H., C. M. Duarte, S. Sobek & A. Enrich-Prast, 2009. Large CO2 disequilibria in tropical lakes. Global Biogeochemical Cycles 23: GB4022.CrossRefGoogle Scholar
  37. Marotta, H., C. M. Duarte, L. Pinho & A. Enrich-Prast, 2010a. Rainfall leads to increased pCO2 in Brazilian coastal lakes. Biogeosciences 7: 1607–1614.CrossRefGoogle Scholar
  38. Marotta, H., C. M. Duarte, F. Meirelles-Pereira, L. Bento, F. A. Esteves & A. Enrich-Prast, 2010b. Long-term CO2 variability in two shallow tropical lakes experiencing episodic eutrophication and acidifications events. Ecosystems 13: 382–392.CrossRefGoogle Scholar
  39. Marotta, H., C. M. Duarte, B. A. Guimarães-Souza & A. Enrich-Prast, 2012. Synergistic control of CO2 emissions by fish and nutrients in a humic tropical lake. Oecologia 168: 839–847.CrossRefPubMedGoogle Scholar
  40. Naselli-Flores, L. & R. Barone, 2005. Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548: 85–99.CrossRefGoogle Scholar
  41. Nõges, P., U. Mischke, R. Laugaste & A. G. Solimini, 2010. Analysis of changes over 44 years in the phytoplankton of Lake Võrtsjarv (Estonia): the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices. Hydrobiologia 646: 33–48.CrossRefGoogle Scholar
  42. Pacheco, F. S., F. Roland & J. A. Downing, 2013. Eutrophication reverses whole–lake carbon budgets. Inland Waters 4: 41–48.CrossRefGoogle Scholar
  43. Pacheco, F. S., M. C. S. Soares, A. T. Assireu, M. P. Curtarelli, F. Roland, G. Abril, J. L. Stech, P. C. Alvalá & J. P. Ometto, 2015. The effects of river inflow and retention time on the spatial heterogeneity of chlorophyll and water–air CO2 fluxes in a tropical hydropower reservoir. Biogeosciences 12: 147–162.CrossRefGoogle Scholar
  44. Peixoto, R. B., H. Marotta & A. Enrich-Prast, 2013. Experimental evidence of nitrogen control on pCO2 in phosphorus enriched humic and clear coastal lagoon waters. Frontiers in Microbiology, Aquatic Microbiology 4: 1–6.Google Scholar
  45. Pinho, L., C. M. Duarte, H. Marotta & A. Enrich-Prast, 2016. Temperature-dependence of the relationship between pCO2 and dissolved organic carbon in lakes. Biogeosciences 13: 865–871.CrossRefGoogle Scholar
  46. R Development Core Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  47. Raymond, P. A., J. Hartmann, R. Lauerwald, S. Sobek, C. McDonald, M. Hoover, D. Butman, R. Striegl, E. Mayorga, C. Humborg, P. Kortelainen, H. Durr, M. Meybeck, P. Ciais & P. Guth, 2013. Global carbon dioxide emissions from inland waters. Nature 503: 355–359.CrossRefPubMedGoogle Scholar
  48. Roland, F., V. L. M. Huszar, V. F. Farjalla, A. Enrich-Prast, A. M. Amado & J. P. H. B. Ometto, 2012. Climate change in Brazil: perspective in the biogeochemistry of inland waters. Brazilian Journal of Biology 72: 709–722.CrossRefGoogle Scholar
  49. Rose, K. C., L. A. Winslow, J. S. Read & G. J. A. Hansen, 2016. Induced warming of lakes can be either amplified or suppressed by trends in water clarity. Limnology and Oceanography Letters. doi: 10.1002/lol2.10027.Google Scholar
  50. Rudorff, C. M., J. M. Melack, S. MacIntyre, C. C. F. Barbosa & E. M. L. M. Novo, 2011. Seasonal and spatial variability of CO2 emission from a large floodplain lake in the lower Amazon. Journal of Geophysical Research 116: G04007.CrossRefGoogle Scholar
  51. Sand-Jensen, K. & P. A. Staehr, 2009. Net heterotrophy in small Danish lakes: a widespread feature over gradients in trophic status and land cover. Ecosystems 12: 336–348.CrossRefGoogle Scholar
  52. Schiemer, F. & K. T. Boland, 1996. Perspectives in Tropical Limnology. Academic Publishing, Amsterdam.Google Scholar
  53. Snoeyink, V. L. & D. Jenkins, 1980. Water Chemistry. Wiley, New York.Google Scholar
  54. Sobek, S., L. J. Tranvik, Y. T. Prairie, P. Kortelainen & J. J. Cole, 2007. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnology and Oceanography 52: 1208–1219.CrossRefGoogle Scholar
  55. Staehr, P. A., J. M. Testa, W. M. Kemp, J. J. Cole, K. Sand-Jensen & S. V. Smith, 2012a. The metabolism of aquatic ecosystems: history, applications, and future challenges. Aquatic Sciences 74: 15–29.CrossRefGoogle Scholar
  56. Staehr, P. A., L. Baastrup-Spohr, K. Sand-Jensen & C. Stedmon, 2012b. Lake metabolism scales with lake morphometry and catchment conditions. Aquatic Sciences 74: 155–169.CrossRefGoogle Scholar
  57. Stumm, W. & J. J. Morgan, 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley-Interscience, New York.Google Scholar
  58. Tonetta, D., R. Laudares-Silva & M. M. Petrucio, 2015a. Planktonic production and respiration in a subtropical lake dominated by cyanobacteria. Brazilian Journal of Biology 75: 460–470.CrossRefGoogle Scholar
  59. Tonetta, D., M. L. S. Fontes & M. M. Petrucio, 2015b. Linking summer conditions to CO2 undersaturation and CO2 influx in a subtropical coastal lake. Limnology 16: 193–201.CrossRefGoogle Scholar
  60. Tonetta, D., P. A. Staehr, R. Schmitt & M. M. Petrucio, 2016. Physical conditions driving the spatial and temporal variability in aquatic metabolism of a subtropical coastal lake. Limnologica 58: 30–40.CrossRefGoogle Scholar
  61. Tranvik, L. J., et al., 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54: 2298–2314.CrossRefGoogle Scholar
  62. Trolle, D., P. A. Staehr, T. A. Davidson, R. Bjerring, T. L. Lauridsen, M. Søndergaard & E. Jeppesen, 2012. Seasonal dynamics of CO2 flux across the surface of shallow temperate lakes. Ecosystems 15: 336–347.CrossRefGoogle Scholar
  63. Tsai, J. W., T. K. Kratz, J. A. Rusak, W. Y. Shih, W. C. Liu, S. L. Tang & C. Y. Chiu, 2016. Absence of winter and spring monsoon changes water level and rapidly shifts metabolism in a subtropical lake. Inland Waters 6: 436–448.Google Scholar
  64. Vachon, D. & Y. T. Prairie, 2013. The ecosystem size and shape dependence of gas transfer velocity versus wind speed relationships in lakes. Canadian Journal of Fisheries and Aquatic Sciences 70: 1757–1764.CrossRefGoogle Scholar
  65. Vadeboncoeur, Y., E. Jeppesen, M. J. V. Zanden, H. H. Schierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 4: 1408–1418.CrossRefGoogle Scholar
  66. Vadeboncoeur, Y., G. Peterson, M. J. V. Zanden & J. Kalff, 2008. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Ecology 89: 2542–2552.CrossRefPubMedGoogle Scholar
  67. Valderrama, J. C., 1981. The simultaneous analysis of total nitrogen and phosphorous in natural waters. Marine Chemistry 10: 109–122.CrossRefGoogle Scholar
  68. Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S. Springer, New York.CrossRefGoogle Scholar
  69. Weyhenmeyer, G. A., S. Kosten, M. B. Wallin, L. J. Tranvik, E. Jeppesen & F. Roland, 2015. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs. Nature Geoscience 8: 933–936.CrossRefGoogle Scholar
  70. Williamson, C. E., J. E. Saros, W. F. Vincent & J. P. Smol, 2009. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnology and Oceanography 54: 2273–2282.CrossRefGoogle Scholar
  71. Yvon-Durocher, G., J. I. Jones, M. Trimmer, G. Woodward & J. M. Montoya, 2010. Warming alters the metabolic balance of ecosystems. Philosophical Transactions of the Royal Society 365: 2117–2126.CrossRefGoogle Scholar
  72. Zohary, T. & I. Ostrovsky, 2011. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 1: 47–59.CrossRefGoogle Scholar
  73. Zuur, A. F., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Denise Tonetta
    • 1
    • 2
    Email author
  • Peter Anton Staehr
    • 2
  • Mauricio Mello Petrucio
    • 1
  1. 1.Laboratory of Freshwater Ecology, Department of Ecology and ZoologyFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Department of BioscienceAarhus UniversityRoskildeDenmark

Personalised recommendations