Life-history responses to environmental change revealed by resurrected rotifers from a historically polluted lake

Abstract

Life-history adaptations to environmental change can be studied retrospectively in organisms that produce dormant propagules using methods of resurrection ecology. Here, we investigated such responses in a planktonic freshwater rotifer, Brachionus calyciflorus. We resurrected 14 clonal lineages from resting eggs extracted from three distinct sediment layers—representing periods of high, medium and low copper pollution—of a previously contaminated lake (Lake Orta, Italy). We exposed the resurrected clones to four copper concentrations over 14 days and recorded population densities at 48 h intervals. If the original populations in Lake Orta had adapted to the changing pollution levels, we expected to find demographic evidence of this adaptation in the resurrected lineages. However, we found high clonal variation in population-growth dynamics, which was more pronounced within than between pollution periods. Moreover, intrinsic population growth rates (r) increased chronologically. As such, the results did not reveal signs of adaptive evolution. Furthermore, we found that lineages from the period of medium copper pollution invested less into sexual reproduction than lineages from the other periods. By using this bio-demographic perspective, our analysis of resurrected rotifers provides insights into the life-history responses of an aquatic invertebrate in an ever-changing environment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bates, D., M. Maechler, B. Bolker & S. Walker, 2014. lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4.

  2. Baudo, R. & M. Beltrami, 2001. Chemical composition of Lake Orta sediments. Journal of Limnology 60: 213–236.

    Google Scholar 

  3. Birky, C. W., 1967. Studies on the physiology and genetics of the rotifer, Asplanchna. III. Results of outcrossing, selfing, and selection. Journal of Experimental Zoology 164: 105–115.

    Article  PubMed  Google Scholar 

  4. Bonacina, C., 2001a. Lake Orta: the undermining of an ecosystem. Journal of Limnology 60: 53–59.

    Article  Google Scholar 

  5. Bonacina, C., 2001b. Has Lake Orta completely recovered from its heavy polluted condition? A seventy years long history. Journal of Limnology 60: 285–287.

    Google Scholar 

  6. Bonacina, C., 2001c. Publications on Lake Orta arranged in chronological order. Journal of Limnology 60: 289–300.

    Google Scholar 

  7. Bonacina, C. & A. Pasteris, 2001. Zooplankton of Lake Orta after liming: an eleven years study. Journal of Limnology 60: 101–109.

    Google Scholar 

  8. Bonacina, C. & R. Baudo, 2001. Lake Orta: a case study (part 1). Journal of Limnology 60: 50–52.

    Google Scholar 

  9. Brendonck, L. & L. De Meester, 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491: 65–84.

    Article  Google Scholar 

  10. Calderoni, A. & G. A. Tatari, 2001. Evolution of water chemistry of Lake Orta after liming. Journal of Limnology 60: 69–78.

    Article  Google Scholar 

  11. Calderoni, A., R. Mosello & D. Ruggiu, 1992. Sixty years of limnology on Lago d’Orta: a case history of recovery from heavy pollution. Memorie dell’Istituto Italiano di Idrobiologia 50: 201–223.

    Google Scholar 

  12. Carmona, M. J., N. Dimas-Flores, E. M. García-Roger & M. Serra, 2009. Selection of low investment in sex in a cyclically parthenogenetic rotifer. Journal of Evolutionary Biology 22: 1975–1983.

    CAS  Article  PubMed  Google Scholar 

  13. De Meester, L., 1993. Inbreeding and outbreeding depression in Daphnia. Oecologia 96: 80–84.

    Article  PubMed  Google Scholar 

  14. De Meester, L., J. Mergeay, H. Michels & E. Decaestecker, 2007. Reconstructing microevolutionary dynamics from layered egg banks. In Alekseev, V. R., B. De Stasio & J. J. Gilbert (eds), Diapause in Aquatic Invertebrates: Theory and Human Use. Springer, Dordrecht: 159–166.

    Google Scholar 

  15. Decaestecker, E., S. Gaba, J. A. M. Raeymaekers, R. Stoks, L. Van Kerckhoven, D. Ebert & L. De Meester, 2007. Host-parasite ‘Red Queenʼ dynamics archived in pond sediment. Nature 450: 870–873.

    CAS  Article  PubMed  Google Scholar 

  16. García-Roger, E. M., M. Serra & M. J. Carmona, 2014. Bet-hedging in diapausing egg hatching of temporary rotifer populations – a review of models and new insights. International Review of Hydrobiology 99: 96–106.

    Article  Google Scholar 

  17. Geerts, A. N., J. Vanoverbeke, B. Vanschoenwinkel, W. Van Doorslaer, H. Feuchmayr, D. Atkinson, B. Moss, T. A. Davidson, C. D. Sayer & L. De Meester, 2015. Rapid evolution of thermal tolerance in the water flea Daphnia. Nature Climate Change 5: 665–668.

    Article  Google Scholar 

  18. Gilbert, J. J. & T. Schröder, 2007. Intraclonal variation in propensity for mixis in several rotifers: variation among females and with maternal age. Hydrobiologia 593: 121–128.

    Article  Google Scholar 

  19. Green, P. & C. J. MacLeod, 2016. SIMR: an R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution 7: 493–498.

    Article  Google Scholar 

  20. Hairston Jr., N. G., 1996. Zooplankton egg banks as biotic reservoirs in changing environments. Limnology and Oceanography 41: 1087–1092.

    Article  Google Scholar 

  21. Hairston Jr., N. G., W. Lampert, C. E. Cáceres, C. L. Holtmeier, L. J. Weider, U. Gaedke, J. M. Fischer, J. A. Fox & D. M. Post, 1999. Rapid evolution revealed by dormant eggs. Nature 401: 446.

    Article  Google Scholar 

  22. Halbach, U., 1970. Die Ursachen der Temporalvariation von Brachionus calyciflorus Pallas (Rotatoria). Oecologia 4: 262–318.

    Article  PubMed  Google Scholar 

  23. Havens, K. E., 1994. Structural and functional responses of a freshwater plankton community to acute copper stress. Environmental Pollution 86: 259–266.

    CAS  Article  PubMed  Google Scholar 

  24. Hendry, A. P. & M. T. Kinnison, 1999. Perspective: the pace of modern life: measuring rates of contemporary microevolution. Evolution 53: 1637–1653.

    Article  PubMed  Google Scholar 

  25. Hertel, E. W., 1942. Studies on vigor in the rotifer Hydatina senta. Physiological Zoology 15: 304–324.

    Article  Google Scholar 

  26. Innes, D. J., 1989. Genetics of Daphnia obtusa: genetic load and linkage analysis in a cyclical parthenogen. Journal of Heredity 80: 6–10.

    Article  Google Scholar 

  27. Janssen, C. R., F. Rodrigo & G. Persoone, 1993. Ecotoxicological studies with the freshwater rotifer Brachionus calyciflorus, I: conceptual framework and applications. Hydrobiologia 255: 21–32.

    Article  Google Scholar 

  28. Janssen, C. R., G. Persoone & T. W. Snell, 1994. Cyst-based toxicity tests. VIII. Short-chronic toxicity tests with the freshwater rotifer Brachionus calyciflorus. Aquatic Toxicology 28: 243–258.

    CAS  Article  Google Scholar 

  29. Karlen, C., I. O. Wallinder, D. Heijerick & C. Leygraf, 2002. Runoff rates, chemical speciation and bioavailability of copper released from naturally patinated copper. Environmental Pollution 120: 691–700.

    CAS  Article  PubMed  Google Scholar 

  30. Kerfoot, W. C., J. A. Robbins & L. J. Weider, 1999. A new approach to historical reconstruction: combining descriptive and experimental paleolimnology. Limnology and Oceanography 44: 1232–1247.

    Article  Google Scholar 

  31. King, C. E. & M. Serra, 1998. Seasonal variation as a determinant of population structure in rotifers reproducing by cyclical parthenogenesis. Hydrobiologia 387/388: 361–372.

    Article  Google Scholar 

  32. Lopes, I., D. J. Baird & R. Ribeiro, 2004. Genetic determination of tolerance to lethal and sublethal copper concentrations in field populations of Daphnia longispina. Archives of Environmental Contamination and Toxicology 46: 43–51.

    CAS  Article  PubMed  Google Scholar 

  33. Lynch, M. & H.-W. Deng, 1994. Genetic slippage in response to sex. The American Naturalist 144: 242–261.

    Article  Google Scholar 

  34. Medina, M. H., J. A. Correa & C. Barata, 2007. Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress. Chemosphere 67: 2105–2114.

    CAS  Article  PubMed  Google Scholar 

  35. Orsini, L., K. Schwenk, L. De Meester, J. K. Colbourne, M. E. Pfrender & L. J. Weider, 2013. The evolutionary time machine: using dormant propagules to forecast how populations can adapt to changing environments. Trends in Ecology & Evolution 28: 274–282.

    Article  Google Scholar 

  36. Ozgul, A., D. Z. Childs, M. K. Oli, K. B. Armitage, D. T. Blumstein, L. E. Olson, S. Tuljapurkar & T. Coulson, 2010. Coupled dynamics of body mass and population growth in response to environmental change. Nature 466: 482–485.

    CAS  Article  PubMed  Google Scholar 

  37. Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar & R Core Team, 2015. nlme: linear and nonlinear mixed effects models. R package version 3.1-120, http://CRAN.R-project.org/package=nlme.

  38. Piscia, R., P. Guilizzoni, D. Fontaneto, D. A. L. Vignati, P. G. Appleby & M. Manca, 2012. Dynamics of rotifer and cladoceran resting stages during copper pollution and recovery in a subalpine lake. Annales de Limnologie - International Journal of Limnology 48: 151–160.

    Article  Google Scholar 

  39. Piscia, R., S. Tabozzi, R. Bettinetti, L. Nevalainen & M. M. Manca, 2016. Unexpected increases in rotifer resting egg abundances during the period of contamination of Lake Orta. Journal of Limnology 75(s2): 76–85.

    Google Scholar 

  40. Pourriot, R. & T. W. Snell, 1983. Resting eggs in rotifers. Hydrobiologia 104: 213–224.

    Article  Google Scholar 

  41. Pradeep, V., S. W. Van Ginkel, S. Park, T. Igou, C. Yi, H. Fu, R. Johnston, T. Snell & Y. Chen, 2015. Use of copper to selectively inhibit Brachionus calyciflorus (predator) growth in Chlorella kessleri (prey) mass cultures for algae biodiesel production. International Journal of Molecular Sciences 16: 20674–20684.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. R Core Team, 2015. R: a language and environment for statistical computing, Vienna. Austria, R Foundation for Statistical Computing. http://www.R-project.org/.

  43. Reznick, D., 1985. Costs of reproduction: an evaluation of the empirical evidence. Oikos 44: 257–267.

    Article  Google Scholar 

  44. Reznick, D. N., F. H. Shaw, F. H. Rodd & R. G. Shaw, 1997. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275: 1934–1937.

    CAS  Article  PubMed  Google Scholar 

  45. Schoener, T. W., 2011. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331: 426–429.

    CAS  Article  PubMed  Google Scholar 

  46. Snell, T. W. & B. L. Garman, 1986. Encounter probabilities between male and female rotifers. Journal of Experimental Marine Biology and Ecology 97: 221–230.

    Article  Google Scholar 

  47. Snell, T. W. & B. D. Moffat, 1992. A 2-d life cycle test with the rotifer Brachionus calyciflorus. Environmental Toxicology and Chemistry 11: 1249–1257.

    CAS  Article  Google Scholar 

  48. Snell, T. W. & C. R. Janssen, 1995. Rotifers in ecotoxicology: a review. Hydrobiologia 313/314: 231–247.

    CAS  Article  Google Scholar 

  49. Sommer, S., S. Nandini, S. S. S. Sarma, A. Ozgul & D. Fontaneto, 2016. Rotifers in Lake Orta: a potential ecological and evolutionary model system. Journal of Limnology 75(s2): 67–75.

    Google Scholar 

  50. Spaak, P. & B. Keller, 2004. No evidence for adaptive micro-evolution to a decrease in phosphorus-loading of a Daphnia population inhabiting a pre-alpine lake. Hydrobiologia 526: 15–21.

    Article  Google Scholar 

  51. Stelzer, C. P., 2005. Evolution of rotifer life histories. Hydrobiologia 546: 335–346.

    Article  Google Scholar 

  52. Tortajada, A. M., M. J. Carmona & M. Serra, 2009. Does haplodiploidy purge inbreeding depression in rotifer populations? PloS ONE 4: e8195.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wallace, R. L., 2002. Rotifers: exquisite metazoans. Integrative and Comparative Biology 42: 660–667.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Piero Guilizzoni, Andrea Lami and Stefano Gerli from the Institute of Ecosystem Study (Verbania Pallanza, Italy) for collecting and dating the sediment cores. This research was supported by grants to AO from the European Research Council (#337785) and the Swiss National Science Foundation (#31003A_146445).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Naomi L. Zweerus.

Additional information

Guest editors: M. Devetter, D. Fontaneto, C. D. Jersabek, D. B. Mark Welch, L. May & E. J. Walsh / Evolving rotifers, evolving science

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zweerus, N.L., Sommer, S., Fontaneto, D. et al. Life-history responses to environmental change revealed by resurrected rotifers from a historically polluted lake. Hydrobiologia 796, 121–130 (2017). https://doi.org/10.1007/s10750-016-3070-6

Download citation

Keywords

  • Brachionus
  • Resurrection ecology
  • Adaptation
  • Population dynamics
  • Copper pollution