Conservation implications of late Holocene freshwater mussel remains of the Leon River in central Texas

  • Traci Popejoy
  • Charles R. Randklev
  • Steve Wolverton
  • Lisa Nagaoka
FRESHWATER BIVALVES

Abstract

Zooarchaeology is the study of animal remains (bone, shell, antler, and other organic tissues) from archaeological sites, which can provide conservation biologists with data on human–environmental interactions with greater time depth than historical records. Such data are of interest because they can be used to study whether or not contemporary animal communities (in this case of freshwater mussels) have changed in terms of species composition or range as a result of human-induced changes to habitat, which is essential for determining a species’ conservation status and formulating actions to protect remaining populations. This study considers whether or not the taxonomic composition of the freshwater mussel community from the Leon River in central Texas differs between the late Holocene and today. Specifically, we analyzed two zooarchaeological assemblages and compared those results with recent surveys conducted within the Leon River. Three species proposed for listing under the Endangered Species Act are found in the zooarchaeological record, of which two are now extirpated from the river basin (Truncilla macrodon and Fusconaia mitchelli). The results of this study provide an example of how zooarchaeological data can be used to evaluate mussel community change through time and provide evidence of range curtailment for threatened mussel species.

Keywords

Freshwater mussels Conservation biogeography Applied zooarchaeology Range constriction Conservation baselines 

References

  1. 31 Texas Administration Code § 65.175.Google Scholar
  2. Alagona, P. S., J. Sandlos & Y. F. Wiersma, 2012. Past imperfect: using historical ecology and baseline data for conservation and restoration projects in North America. Environmental Philosophy 9: 49–70.CrossRefGoogle Scholar
  3. Balaguer, L., A. Escudero, J. F. Martín-Duque, I. Mola & J. Aronson, 2014. The historical reference in restoration ecology: re-defining a cornerstone concept. Biological Conservation 176: 12–20.CrossRefGoogle Scholar
  4. Bogan, A. E., 1990. Stability of recent unionid (Mollusca: Bivalvia) communities over the past 6000 years. In Miller III, W. (ed.), Paleocommmunity Temporal Dynamics: the Long-Term Development of Multispecies Assemblies. The Paleontological Society, Boulder: 112–136.Google Scholar
  5. Bomar, G. W., 1983. Texas Weather. University of Texas Press, Austin.Google Scholar
  6. Burlakova, L. E., A. Y. Karatayev, V. A. Karatayev, M. E. May, D. L. Bennett & M. J. Cook, 2011. Biogeography and conservation of freshwater mussels (Bivalvia: Unionidae) in Texas: patterns of diversity and threats. Diversity and Distributions 17: 393–407. doi:10.1111/j.1472-4642.2011.00753.x CrossRefGoogle Scholar
  7. Cannon, K. P. & M. B. Cannon, 2004. Zooarchaeology and wildlife management in the greater yellowstone ecosystem. In Lyman, R. L. & K. P. Cannon (eds), Zooarchaeology and Conservation Biology. University of Utah Press, Salt Lake City: 45–60.Google Scholar
  8. Christian, A. D., J. L. Harris, W. R. Posey, J. F. Hockmuth & G. L. Harp, 2005. Freshwater mussel (Bivalvia: Unionidae) assemblages of the Lower Cache River, Arkansas. Southeastern Naturalist 4: 487–512.CrossRefGoogle Scholar
  9. Clean Water Act, 1972. 33 United States Code §§1251–1387.Google Scholar
  10. Colley, S. M., 1990. The analysis and interpretation of archaeologial fish remains. Archaeological Method and Theory 2: 207–253.Google Scholar
  11. Driver, J. C., 1992. Identification, classification and zooarchaeology. Circaea 9: 35–47.Google Scholar
  12. Driver, J. C., 2011. Identification, classification and zooarchaeology. Ethnobiology Letters 2: 19–39.CrossRefGoogle Scholar
  13. Dombrosky, J., S. Wolverton & L. Nagaoka, 2016. Archaeological data suggest broader early historic distribution for blue sucker (Cycleptus elongatus, Actinopterygii, Catostomidae) in New Mexico. Hydrobiologia 771: 255–263.CrossRefGoogle Scholar
  14. Endangered Species Act, 1973. 16 United States Code §1531–1544.Google Scholar
  15. Freshwater Mollusk Conservation Society, 2016. A national strategy for the conservation of native freshwater mollusks. Freshwater Mollusk Biology and Conservation 19: 1–21.Google Scholar
  16. Gates, K. K., C. C. Vaughn & J. P. Julian, 2015. Developing environmental flow recommendations for freshwater mussels using the biological traits of species guilds. Freshwater Biology 60: 620–635. doi:10.1111/fwb.12528 CrossRefGoogle Scholar
  17. Giovas, C. M., 2009. The shell game: analytic problems in archaeological mollusc quantification. Journal of Archaeological Science 36: 1557–1564.CrossRefGoogle Scholar
  18. Haag, W. R., 2012. North American Freshwater Mussels: Natural History, Ecology and Conservation. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  19. Haag, W. R. & M. L. Warren Jr., 2008. Effects of severe drought on freshwater mussel assemblages. Transactions of the American Fisheries Society 137: 1165–1178.CrossRefGoogle Scholar
  20. Haag, W. R. & J. D. Williams, 2014. Biodiversity on the brink: an assessment of conservation strategies for North American freshwater mussels. Hydrobiologia 735: 45–60.CrossRefGoogle Scholar
  21. Harris, M., M. Weisler & P. Faulkner, 2015. A refined protocol for calculating MNI in archaeological molluscan shell assemblages: a Marshall Islands case study. Journal of Archaeological Science 57: 168–179.CrossRefGoogle Scholar
  22. Howells, R. G., 2006. Statewide Freshwater Mussel Survey: Final Report. Texas Parks and Wildlife Department, Austin.Google Scholar
  23. Howells, R. G., 2013. Field Guide to Texas Freshwater Mussels. BioStudies, Kerrville, TX.Google Scholar
  24. Howells, R. G., R. W. Neck & H. D. Murray, 1996. Freshwater Mussels of Texas. Texas Parks and Wildlife Press, Austin.Google Scholar
  25. Humphries, P. & K. O. Winemiller, 2009. Historical impacts on river fauna, shifting baselines, and challenges for restoration. BioScience 59: 673–684.CrossRefGoogle Scholar
  26. Inoue, K., B. K. Lang & D. J. Berg, 2015. Past climate change drives current genetic structure of an endangered freshwater mussel species. Molecular Ecology 24: 1910–1926. doi:10.1111/mec.13156 CrossRefPubMedGoogle Scholar
  27. Jones, R. L., W. T. Slack & P. D. Hartfield, 2005. The freshwater mussels (Mollusca: Bivalvia: Unionidae) of Mississippi. Southeastern Naturalist 4: 77–92.CrossRefGoogle Scholar
  28. Landres, P. B., 1992. Temporal scale perspectives in managing biological diversity. Transactions of the North American Wildlife and Natural Resources Conference 57: 292–307.Google Scholar
  29. Lyman, R. L., 1996. Applied zooarchaeology: the relevance of faunal analysis to wildlife management. World Archaeology 28: 110–125.CrossRefGoogle Scholar
  30. Lyman, R. L., 2012. A warrant for applied palaeozoology. Biological reviews of the Cambridge Philosophical Society 87: 513–525.CrossRefPubMedGoogle Scholar
  31. Metcalfe-Smith, J. L., J. Di Maio, S. K. Staton & G. L. Mackie, 2000. Effect of sampling effort on the efficiency of the timed search method for sampling freshwater mussel communities. Journal of the North American Benthological Society 19: 725–732.CrossRefGoogle Scholar
  32. Miller, E. J., J. J. Tomasic & M. C. Barnhart, 2014. A comparison of freshwater mussels (Unionidae) from a late-Archaic archeological excavation with recently sampled Verdigris River, Kansas, populations. The American Midland Naturalist 171: 16–26.CrossRefGoogle Scholar
  33. Mitchell, J. & E. Peacock, 2014. A prehistoric freshwater mussel assemblage from the Big Sunflower River, Sunflower County, Mississippi. Southeastern Naturalist 13: 626–638.CrossRefGoogle Scholar
  34. Neves, R. J., 1995. Keynote address: A national strategy for the conservation of native freshwater mussels. Conservation and Management of Freshwater Mussels II 101: 1–10.Google Scholar
  35. Nobles, T. & Y. Zhang, 2011. Biodiversity loss in freshwater mussels: Importance, threats, and solutions. Biodiversity Loss in a Changing Planet 318: 17–162.Google Scholar
  36. Ortmann, A. E., 1909. The destruction of the fresh-water fauna in western Pennsylvania. Proceedings of the American Philosophical Society 48: 90–110.Google Scholar
  37. Parmalee, P. W. & A. E. Bogan, 1986. Molluscan remains from aborginal middens at the Clinch River breeder reactor plant site, Roane County, Tennessee. American Malacological Bulletin 4: 25–37.Google Scholar
  38. Parmalee, P. W. & W. E. Klippel, 1974. Freshwater mussels as a prehistoric food resource. American Antiquity 39: 421–434.CrossRefGoogle Scholar
  39. Parmalee, P. W. & R. R. Polhemus, 2004. Prehistoric and pre-impoundment populations of freshwater mussels (Bivalvia: Unionidae) in the South Fork Holston River, Tennessee. Southeastern Naturalist 3: 231–240.CrossRefGoogle Scholar
  40. Parmalee, P. W., W. E. Klippel & A. E. Bogan, 1982. Aboriginal and modern freshwater mussel assemblages (Pelecypoda: Unionidae) from the Chickamauga Reservoir, Tennessee. Brimleyana 8:75–90.Google Scholar
  41. Peacock, E., 2005. Environmental archaeology. Journal of Alabama Archaeology 51: 32–39.Google Scholar
  42. Peacock, E., 2012. Archaeological freshwater mussel remains and their use in the conservation of an imperiled fauna. In Wolverton, S. & R. L. Lyman (eds), Conservation Biology and Applied Zooarchaeology. University of Arizona Press, Tuscan: 42–68.Google Scholar
  43. Peacock, E., C. R. Randklev, S. Wolverton, R. A. Palmer & S. Zaleski, 2012. The “cultural filter,” human transport of mussel shell, and the applied potential of zooarchaeological data. Ecological Applications 22: 1446–1459.CrossRefPubMedGoogle Scholar
  44. Popejoy, T., S. Wolverton, L. Nagaoka & C. R. Randklev, 2016. An interpretive framework for assessing freshwater mussel taxonomic abundances in zooarchaeological faunas. Quaternary International. doi: 10.1016/j.quaint.2015.09.101 Google Scholar
  45. Randklev, C. R., 2010. Zooarchaeoloical analysis of the prehistoric mussel fauna from selected rock-shelters near Belton Lake: Belton County, Texas. Report for AMEC Earth & Environmental Inc, Bothell, WA.Google Scholar
  46. Randklev, C. R. & B. J. Lundeen, 2012. Prehistoric biogeography and conservation status of threatened freshwater mussels (Mollusca: Unionidae) in the upper Trinity River drainage, Texas. In Wolverton, S. & R. L. Lyman (eds), Conservation Biology and Applied Zooarchaeology. The University of Arizona Press, Tuscan: 68–91.Google Scholar
  47. Randklev, C. R., S. Wolverton & J. H. Kennedy, 2009. A biometric technique for assessing prehistoric freshwater mussel population dynamics (family: Unionidae) in north Texas. Journal of Archaeological Science 36: 205–213.CrossRefGoogle Scholar
  48. Randklev, C. R., B. J. Lundeen, R. G. Howells & J. H. Kennedy, 2010a. First account of a living population of Texas fawnsfoot, Truncilla Macrodon (Bivalvia: Unionidae), in the Brazos River, Texas. The Southwestern Naturalist 55: 297–299.CrossRefGoogle Scholar
  49. Randklev, C. R., S. Wolverton, B. J. Lundeen & J. H. Kennedy, 2010b. A paleozoological perspective on unionid (Mollusca: Unionidae) zoogeography in the upper Trinity River basin, Texas. Ecological Applications 20: 2359–2368.CrossRefPubMedGoogle Scholar
  50. Randklev, C. R., M. S. Johnson, E. Tsakiris, S. Rogers-Oetker, K. J. Roe, J. L. Harris, S. E. McMurray, C. Robertson, J. Groce & N. Wilkins, 2012. False spike, Quadrula mitchelli (Bivalvia: Unionidae), is not extinct: first account of a live population in over 30 years. American Malacological Bulletin 30: 327–328.CrossRefGoogle Scholar
  51. Randklev, C. R., M. S. Johnson, E. Tsakiris, J. Groce & N. Wilkins, 2013a. Status of the freshwater mussel (Unionidae) communities of the mainstem of the Leon River, Texas. Aquatic Conservation: Marine and Freshwater Ecosystems 23: 390–404.CrossRefGoogle Scholar
  52. Randklev, C. R., E. Tsakiris, R. G. Howells, J. Groce, M. S. Johnson, J. Bergmann, C. Robertson, A. Blair, B. Littrell & N. A. Johnson, 2013b. Distribution of extant populations of Quadrula mitchelli (false spike). Ellipsaria 15: 18–21.Google Scholar
  53. Randklev, C. R., E. Tsakiris, M. S. Johnson, J. A. Skorupski, L. E. Burlakova, J. Groce & N. Wilkins, 2013c. Is false spike, Quadrula mitchelli (Bivalvia: Unionidae), extinct? First account of a very recently deceased individual in over thirty years. The Southwestern Naturalist 58: 247–250.CrossRefGoogle Scholar
  54. Rick, T. C. & R. Lockwood, 2013. Integrating paleobiology, archeology, and history to inform biological conservation. Conservation Biology 27: 45–54.CrossRefPubMedGoogle Scholar
  55. Rose, D. R. & A. A. Echelle, 1981. Factor analysis of associations of fishes in Little River, central Texas, with an interdrainage comparison. The American Midland Naturalist 106: 379–391.CrossRefGoogle Scholar
  56. Scharf, E. A., 2014. Deep time: the emerging role of archaeology in landscape ecology. Landscape Ecology 29: 563–569.CrossRefGoogle Scholar
  57. Shea, C. P., J. T. Peterson, M. J. Conroy & J. M. Wisniewski, 2013. Evaluating the influence of land use, drought and reach isolation on the occurrence of freshwater mussel species in the lower Flint River basin, Georgia (USA). Freshwater Biology 58: 382–395.CrossRefGoogle Scholar
  58. Sowards, B., E. T. Tsakiris, M. Libson & C. R. Randklev, 2013. Recent collection of a false spike (Quadrula mitchelli) in the San Saba River, Texas, with comments on habitat use. Walkerana 16: 63–67.Google Scholar
  59. Strayer, D. L., 2008. Freshwater Mussel Ecology: A Multifactor Approach to Distribution and Abundance. University of California Press, Berkeley.CrossRefGoogle Scholar
  60. Strecker, J. K., 1931. The Naiades or Pearly Freshwater Mussels of Texas. Baylor University Museum, Waco, TX.Google Scholar
  61. Swetnam, T. W., C. D. Allen & J. L. Betancourt, 1999. Applied historical ecology: using the past to manage for the future. Ecological Applications 9: 1189–1206.CrossRefGoogle Scholar
  62. Tharp, B. C., 1939. The Vegetation of Texas. Anson Jones Press, Houston.Google Scholar
  63. Tsakiris, E. T. & C. R. Randklev, 2016. Structural changes in freshwater mussel (Bivalvia: Unionidae) assemblages downstream of Lake Somerville, Texas. American Midland Naturalist 175: 120–127.CrossRefGoogle Scholar
  64. United States Fish and Wildlife Service, 2014. Federal register: endangered and threatened wildlife and plants; Review of native species that are candidates for listing as endangered or threatened; Annual notice of findings on resubmitted petitions. Annual description of progress on listing actions 79: 72450–72497.Google Scholar
  65. United States Geological Survey, 2015. National Water Information System data available on the World Wide Web (USGS Water Data for the Nation), http://waterdata.usgs.gov/tx/nwis/si. Accessed 1 January 2015.
  66. Vaughn, C. C., C. L. Atkinson & J. P. Julian, 2015. Drought-induced changes in flow regimes lead to long-term losses in mussel-provided ecosystem services. Ecology and Evolution 5: 1291–1305.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Vaughn, C. C. & C. M. Taylor, 1999. Impoundments and the decline of freshwater mussels: a case study of an extinction gradient. Conservation Biology 13: 912–920.CrossRefGoogle Scholar
  68. Warren, R. E., 1991 Freshwater mussels as paleoenvironmental indicators: A quantitative approach to assemblage analysis. In Purdue, J. R., Klippel, W. E., & B. W. Styles (eds), Beamers Bobwhites and Blue-Points: Tributes to the Career of Paul W. Parmalee. Illinois State Museum: 23-66Google Scholar
  69. Weber, E., 2005. Population size and structure of three mussel species (Bivalvia: Unionidae) in a northeastern German river with special regard to influences of environmental factors. Hydrobiologia 537: 169–183.CrossRefGoogle Scholar
  70. Weinstein, R. A., 2015. Archaeological and geological test excavations at site 41HM61, Hamilton County, Texas: Middle Archaic through late prehistoric occupation in the Leon River valley of central Texas. Environmatal Affairs Division of the Texas Department of Transportation.Google Scholar
  71. Williams, J. D. & A. Fradkin, 1999. Fusconaia apalachicola, a new species of freshwater mussel (Bivalvia: Unionidae) from pre-Columbian archaeological sites in the Apalachicola basin of Alabama, Florida, and Georgia. Tulane Studies in Zoology 31: 51–62.Google Scholar
  72. Williams, J. D., A. E. Bogan & J. T. Garner, 2008. Freshwater Mussels of Alabama and the Mobile Basin in Geogria, Mississippi, and Tenessee. The University of Alabama Press, Tuscaloosa.Google Scholar
  73. Wolaver, B., C. Cook, B. Scanlon & M. Young, 2012. A hydrologic-characterization approach for Texas aquatic species studies. Gulf Coast Association of Geological Societies Transactions 62: 645–651.Google Scholar
  74. Wolverton, S., 2013. Data quality in zooarchaeological faunal identification. Journal of Archaeological Method and Theory 20: 381–396.CrossRefGoogle Scholar
  75. Wolverton, S. & R. L. Lyman, 2012a. Conservation Biology and Applied Zooarchaeology. University of Arizona Press, Tucson.Google Scholar
  76. Wolverton, S. & R. L. Lyman, 2012b. Introduction to applied zooarchaeology. In Wolverton, S. & R. L. Lyman (eds), Conservation Biology and Applied Zooarchaeology. University of Arizona, Tuscan: 1–22.Google Scholar
  77. Wolverton, S. & C. R. Randklev, 2016. Archaeological data indicate a broader late Holocene distribution of the sandbank pocketbook (Unionidae: Lampsilis satura Lea 1852) in Texas. American Malacological Bulletin, New York.Google Scholar
  78. Wolverton, S., L. Nagaoka & T. C. Rick, 2016. Applied Zooarchaeology: Five Case Studies. Elliot Werner Publications Inc, New York.Google Scholar
  79. Wolverton, S., C. R. Randklev & J. H. Kennedy, 2010. A conceptual model for freshwater mussel (Family: Unionidae) remain preservation in zooarchaeological assemblages. Journal of Archaeological Science 37: 164–173.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Oklahoma Biological Survey, Department of Biology, and Ecology and Evolutionary Biology Graduate ProgramUniversity of OklahomaNormanUSA
  2. 2.Department of Geography and the EnvironmentUniversity of North TexasDentonUSA
  3. 3.Texas A&M, Institute of Renewable and Natural ResourcesCollege StationUSA

Personalised recommendations