Hydrobiologia

, Volume 790, Issue 1, pp 259–272 | Cite as

Delineating the role of calcium in shell formation and elemental composition of Corbicula fluminea (Bivalvia)

  • Liqiang Zhao
  • Bernd R. Schöne
  • Regina Mertz-Kraus
Primary Research Paper

Abstract

Calcium is one of the major constituents of bivalve shells. Other element impurities potentially record physical and chemical changes of the ambient environment during growth. It is commonly assumed that Ca2+ and other divalent ions may share the same transport mechanisms because of similar ionic radii and electrochemical properties. However, little effort has been devoted to bolstering this hypothesis. Here, we investigated the effects of Ca2+ on shell formation and element composition of the freshwater bivalve, Corbicula fluminea. Our results showed that increasing aqueous Ca2+ levels from 3 to 6 mM did not facilitate shell production. However, the amounts of Mn, Cu, and Pb incorporated into the shells significantly decreased, indicating the potential competition with Ca2+ in the same transport pathways. Furthermore, blocking the Ca2+ channels by lanthanum and Verapamil significantly reduced Mn, Cu, Zn, and Pb incorporation into the shells, and Mn/Cashell and Cu/Cashell decreased simultaneously when inhibiting the Ca2+-ATPase by ruthenium red. However, the amounts of Mg, Sr, and Ba incorporated into the shells were virtually unaffected, implying that intracellular Ca2+ transport mechanisms are not responsible for their incorporation into the shells. These findings help decipher underlying mechanisms responsible for the element partitioning between the ambient water and the shells.

Keywords

Bivalve shells Calcium Element-to-calcium ratio Biomineralization 

Supplementary material

10750_2016_3037_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 kb)

References

  1. Allison, J. D., D. S. Brown & J. Kevin, 1991. MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: version 3.0 user’s manual. Athens, GA: Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency.Google Scholar
  2. Bellotto, V. R. & N. Miekeley, 2007. Trace metals in mussel shells and corresponding soft tissue samples: a validation experiment for the use of Perna perna shells in pollution monitoring. Analytical and Bioanalytical Chemistry 389: 769–776.CrossRefPubMedGoogle Scholar
  3. Black, B. A., D. C. Gillespie, S. E. MacLellan & C. M. Hand, 2008. Establishing highly accurate production-age data using the tree-ring technique of crossdating: a case study for Pacific geoduck (Panopea abrupta). Canadian Journal of Fisheries and Aquatic Sciences 65: 2572–2578.CrossRefGoogle Scholar
  4. Bolotov, I. N., O. S. Pokrovsky, Y. Auda, J. V. Bespalaya, I. V. Vikhrev, M. Y. Gofarov, A. A. Lyubas, J. Viers & C. Zouiten, 2015. Trace element composition of freshwater pearl mussels Margaritifera spp. across Eurasia: testing the effect of species and geographic location. Chemical Geology 402: 125–139.CrossRefGoogle Scholar
  5. Bourgoin, B. P., 1990. Mytilus edulis shell as a bioindicator of lead pollution: considerations on bioavailability and variability. Marine Ecology Progress Series 61: 253–262.CrossRefGoogle Scholar
  6. Bruland, K. W., 1983. Trace elements in seawater. In Wong, C. S., K. W. Bruland, D. Burton & E. D. Goldberg (eds), Chemical oceanography. Academic Press, London: 157–220.CrossRefGoogle Scholar
  7. Campbell, P. G., 1995. Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In Tessier, A. & D. R. Turner (eds), Metal Speciation and Bioavailability in Aquatic Systems. Wiley, New York: 45–102.Google Scholar
  8. Carré, M., I. Bentaleb, O. Bruguier, E. Ordinola, N. T. Barrett & M. Fontugne, 2006. Calcification rate influence on trace element concentrations in aragonitic bivalve shells: evidences and mechanisms. Geochimica et Cosmochimica Acta 70: 4906–4920.CrossRefGoogle Scholar
  9. Carriker, M. R., R. E. Palmer, L. V. Sick & C. C. Jonhson, 1980. Interaction of mineral elements in sea water and shell of oysters (Crassostrea virginica (Gmelin)) cultured in controlled and natural systems. Journal of Experimental Marine Biology and Ecology 46: 279–296.CrossRefGoogle Scholar
  10. Coimbra, A. M., K. G. Ferreira, P. L. Fernandes & H. G. Ferreira, 1993. Calcium exchanges in Anodonta cygnea: barriers and driving gradients. Journal of Comparative Physiology 163: 196–202.Google Scholar
  11. Coimbra, J., J. Machado, P. L. Fernandes, H. G. Ferreira & K. G. Ferreira, 1988. Electrophysiology of the mantle of Anodonta cygnea. Journal of Experimental Biology 140: 65–88.Google Scholar
  12. Crenshaw, M. A., 1972. Inorganic composition of molluscan extrapallial fluid. Biological Bulletin 143: 506–512.CrossRefGoogle Scholar
  13. Deaton, L. E., 1981. Ion regulation in freshwater and brackish water bivalve mollusks. Physiological Zoology 54: 109–121.CrossRefGoogle Scholar
  14. Dietz, T. H., 1979. Uptake of sodium and chloride by freshwater mussels. Canadian Journal of Zoology 57: 156–160.CrossRefGoogle Scholar
  15. Fan, W., C. Li, S. Li, Q. Feng, L. Xie & R. Zhang, 2007. Cloning, characterization, and expression patterns of three sarco/endoplasmic reticulum Ca2+-ATPase isoforms from pearl oyster (Pinctada fucata). Acta Biochimica et Biophysica Sinica 39: 722–730.CrossRefPubMedGoogle Scholar
  16. Gillikin, D. P., A. Lorrain, J. Navez, J. W. Taylor, L. André, E. Keppens, W. Baeyens & F. Dehairs, 2005. Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochemistry Geophysics Geosystems 6: Q05009.CrossRefGoogle Scholar
  17. Gosling, E., 2003. An introduction to bivalves. Biology, Ecology and Culture. Fishing News Books, Blackwell, Oxford, Bivalve Molluscs.CrossRefGoogle Scholar
  18. Guerrero, J. & S. S. Martin, 1984. Verapamil, full spectrum Ca channel blocking agent: an overview. Medicinal Research Reviews 4: 87–109.CrossRefPubMedGoogle Scholar
  19. Hatch, M. B., S. A. Schellenberg & M. L. Carter, 2013. Ba/Ca variations in the modern intertidal bean clam Donax gouldii: an upwelling proxy? Palaeogeography Palaeoclimatology Palaeoecology 373: 98–107.CrossRefGoogle Scholar
  20. Hincks, S. S. & G. L. Mackie, 1997. Effects of pH, calcium, alkalinity, hardness, and chlorophyll on the survival, growth, and reproductive success of zebra mussel (Dreissena polymorpha) in Ontario lakes. Canadian Journal of Fisheries and Aquatic Sciences 54: 2049–2057.CrossRefGoogle Scholar
  21. Jeffree, R. A., S. J. Markich, F. Lefebvre, M. Thellier & C. Ripoll, 1995. Shell microlaminations of the freshwater bivalve Hyridella depressa as an archival monitor of manganese water concentration: experimental investigation by depth profiling using secondary ion mass spectrometry (SIMS). Experientia 51: 838–848.CrossRefGoogle Scholar
  22. Kaehler, S. & C. D. McQuaid, 1999. Use of the fluorochrome calcein as an in situ growth marker in the brown mussel Perna perna. Marine Biology 133: 455–460.CrossRefGoogle Scholar
  23. Kastner, M., 1999. Oceanic minerals: their origin, nature of their environment and significance. Proceedings of the National Academy of Sciences 96: 3380–3387.CrossRefGoogle Scholar
  24. Klein, R. T., K. C. Lohman & C. W. Thayer, 1996. Sr/Ca and 13C/12C ratios in skeletal calcite of Mytilus trossulus: covariation with metabolic rate, salinity and carbon isotopic composition of sea water. Geochimica et Cosmochimica Acta 60: 4207–4221.CrossRefGoogle Scholar
  25. Kleypas, J. & C. Langdon, 2000. Overview of CO2-induced changes in seawater chemistry. Proceedings of the 9th International Coral Reef Symposium, Bali, Indonesia, 23–27 October 2000, 2: 1085–1089.Google Scholar
  26. Krause-Nehring, J., T. Brey & S. R. Thorrold, 2012. Centennial records of lead contamination in northern Atlantic bivalves (Arctica islandica). Marine Pollution Bulletin 64: 233–240.CrossRefPubMedGoogle Scholar
  27. Lucas, A. P. & G. Beninger, 1985. The use of physiological condition index in marine bivalve aquaculture. Aquaculture 44: 187–200.CrossRefGoogle Scholar
  28. Marin, F., N. L. Le Roy & B. Marie, 2012. The formation and mineralization of mollusk shells. Frontiers in Bioscience 4: 1099–1125.CrossRefGoogle Scholar
  29. Markich, S. J. & R. A. Jeffree, 1994. Absorption of divalent trace metals as analogues of calcium by Australian freshwater bivalves: an explanation of how water hardness reduces metal toxicity. Aquatic Toxicology 29: 257–290.CrossRefGoogle Scholar
  30. McConnaughey, T. A. & D. P. Gillikin, 2008. Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters 28: 287–299.CrossRefGoogle Scholar
  31. McMahon, R. F., 1983. Ecology of an invasive pest bivalve, Corbicula. Mollusca 6: 505–561.Google Scholar
  32. McMahon, R. F., 2002. Evolutionary and physiological adaptations of aquatic invasive animals: r selection versus resistance. Canadian Journal of Fisheries and Aquatic Sciences 59: 1235–1244.CrossRefGoogle Scholar
  33. Mellina, E. & J. B. Rasmussen, 1994. Patterns in the distribution and abundance of zebra mussel (Dreissena polymorpha) in rivers and lakes in relation to substrate and other physicochemical factors. Canadian Journal of Fisheries and Aquatic Sciences 51: 1024–1036.CrossRefGoogle Scholar
  34. Millero, F. J., R. Feistel, D. G. Wright & T. J. McDougall, 2008. The composition of standard seawater and the definition of the reference-composition salinity scale. Deep-Sea Research 55: 50–72.CrossRefGoogle Scholar
  35. Murphy, W. A. & T. H. Dietz, 1976. The effects of salt depletion on blood and tissue ion concentrations in the freshwater mussel, Ligumia subrostrata (Say). Journal of Comparative Physiology 108: 233–242.CrossRefGoogle Scholar
  36. Nduku, W. K. & A. D. Harrison, 1976. Calcium as a limiting factor in the biology of Biomphalaria pfeifferi (Krauss) (Gastropoda: Planorbidae). Hydrobiologia 49: 143–170.CrossRefGoogle Scholar
  37. Phillips, D. J. H., 1976. The common mussel Mytilus edulis as an indicator of pollution by zinc, lead, and copper, I: effects on environmental variables on uptake of metals. Marine Biology 38: 59–69.CrossRefGoogle Scholar
  38. Prezant, R. S. & A. Tan-Tiu, 1985. Comparative shell microstructure of North American Corbicula (Bivalvia: Sphaeriacea). Veliger 27: 312–319.Google Scholar
  39. Qiu, J. W. & W. X. Wang, 2005. Effects of calcium on the uptake and elimination of cadmium and zinc in Asiatic clams. Archives of Environmental Contamination and Toxicology 48: 278–287.CrossRefPubMedGoogle Scholar
  40. Richardson, C. A., S. R. N. Chenery & J. M. Cook, 2001. Assessing the history of trace metal (Cu, Zn, Pb) contamination in the North Sea through laser ablation ICP-MS of horse mussel Modiolus modiolus shells. Marine Ecology Progress Series 211: 157–167.CrossRefGoogle Scholar
  41. Schöne, B. R., 2013. Arctica islandica (Bivalvia): a unique paleoenvironmental archive of the northern North Atlantic Ocean. Global and Planetary Change 111: 199–225.CrossRefGoogle Scholar
  42. Schöne, B. R., Z. Zhang, D. Jacob, D. P. Gillikin, T. Tütken, D. Garbe-Schönberg & A. Soldati, 2010. Effect of organic matrices on the determination of the trace element chemistry (Mg, Sr, Mg/Ca, Sr/Ca) of aragonitic bivalve shells (Arctica islandica) – comparison of ICP-OES and LA-ICP-MS data. Geochemical Journal 44: 23–37.CrossRefGoogle Scholar
  43. Schöne, B. R., Z. Zhang, P. Radermacher, J. Thébault, D. E. Jacob, E. V. Nunn & A. F. Maurer, 2011. Sr/Ca and Mg/Ca ratios of ontogenetically old, long-lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies. Palaeogeography Palaeoclimatology Palaeoecology 302: 52–64.CrossRefGoogle Scholar
  44. Shannon, R. D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica B 32: 751–767.Google Scholar
  45. Shirai, K., B. R. Schöne, T. Miyaji, P. Radermacher, R. A. Krause Jr. & K. Tanabe, 2014. Assessment of the mechanism of elemental incorporation into bivalve shells (Arctica islandica) based on elemental distribution at the microstructural scale. Geochimica et Cosmochimica Acta 126: 307–320.CrossRefGoogle Scholar
  46. Shi, D. L. & W. X. Wang, 2004. Understanding the differences in Cd and Zn bioaccumulation and subcellular storage among different populations of marine clams. Environmental Science & Technology 38: 449–456.CrossRefGoogle Scholar
  47. Simkiss, K. & M. G. Taylor, 1989. Metal fluxes across the membranes of aquatic organisms. Aquatic Sciences 1: 173–188.Google Scholar
  48. Sprung, M., 1987. Ecological requirements of developing Dreissena polymorpha eggs. Archiv für Hydrobiologie, Supplementband 79: 69–86.Google Scholar
  49. Takesue, R. K., C. R. Bacon & J. K. Thompson, 2008. Influences of organic matter and calcification rate on trace elements in aragonitic estuarine bivalve shells. Geochimica et Cosmochimica Acta 72: 5431–5445.CrossRefGoogle Scholar
  50. Thébault, J., L. Chauvaud, J. Clavier, R. Fichez & E. Morize, 2006. Evidence of a 2-day periodicity of striae formation in the tropical scallop Comptopallium radula using calcein marking. Marine Biology 149: 257–267.CrossRefGoogle Scholar
  51. Thébault, J., L. Chauvaud, S. L. Helguen, J. Clavier, A. Barats, S. Jacquet, C. Pécheyran & D. Amouroux, 2009. Barium and molybdenum records in bivalve shells: geochemical proxies for phytoplankton dynamics in coastal environments? Limnology and Oceanography 54: 1002–1014.CrossRefGoogle Scholar
  52. Viarengo, A. & J. A. Nott, 1993. Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comparative Biochemistry and Physiology C 104: 355–372.CrossRefGoogle Scholar
  53. Verbost, P. M., J. Van Rooij, G. Flik, R. A. C. Lock & S. E. Wendelaar Bonga, 1989. The movement of cadmium through freshwater trout branchial epithelium and its interference with Ca transport. Journal of Experimental Biology 145: 185–197.Google Scholar
  54. Vinogradov, G. A., N. F. Smirnova, V. A. Sokalov & A. A. Bruznitsky, 1993. Influence of chemical composition of the water on the mollusk Dreisenna polymorpha. In Nalepa, T. F. & D. W. Schloesser (eds), Zebra Mussels: Biology, Impacts, and Control. Lewis Publishers/CRC Press, Boca Raton: 283–293.Google Scholar
  55. Wada, K. & T. Fujinuki, 1976. Biomineralization in bivalve molluscs with emphasis on the chemical composition of the extrapallial fluid. In Bryan, N. M. & K. M. Wilbur (eds), Mechanisms of Mineralization in the Invertebrates and Plants. University of South Carolina Press, Georgetown: 175–190.Google Scholar
  56. Wanamaker Jr., A. D., K. J. Kreutz, B. R. Schöne, K. A. Maasch, A. Pershing, H. W. Borns, D. S. Introne & S. Feindel, 2009. A late Holocene paleo-productivity record in the Western Gulf of Maine, USA, inferred from growth histories of the long-lived ocean quahog (Arctica islandica). International Journal of Earth Sciences 98: 19–29.CrossRefGoogle Scholar
  57. Watson, E. L., F. F. Vincenzi & P. W. Davis, 1971. Ca2+-activated membrane ATPase: selective inhibition by ruthenium red. Biochimica et Biophysica Acta 249: 606–610.CrossRefPubMedGoogle Scholar
  58. Wheeler, A. P., 1992. Mechanisms of molluscan shell formation. In Bonucci, E. (ed.), Calcification in biological systems. CRC Press, Boca Raton, FL: 179–216.Google Scholar
  59. Wilbur, K. M. & A. S. M. Saleuddin, 1983. Shell formation. In Saleuddin, A. S. M. & K. M. Wilbur (eds), The Mollusca 4. Physiology. Academic Press, New York.Google Scholar
  60. Zhao, L. Q., B. R. Schöne & R. Mertz-Kraus, 2015. Controls on strontium and barium incorporation into freshwater bivalve shells (Corbicula fluminea). Palaeogeography Palaeoclimatology Palaeoecology. doi:10.1016/j.palaeo.2015.11.040.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Liqiang Zhao
    • 1
  • Bernd R. Schöne
    • 1
  • Regina Mertz-Kraus
    • 1
  1. 1.Institute of GeosciencesUniversity of MainzMainzGermany

Personalised recommendations