Skip to main content

Advertisement

Log in

Role of predation in biological communities in naturally eutrophic sub-Arctic Lake Mývatn, Iceland

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Effects of fish predation on consumers tend to be particularly strong in oligotrophic Arctic and sub-Arctic lakes. However, it remains unclear whether the fish influence the trophic structure and dynamics of naturally eutrophic lakes in these cold environments with simple food web structures. To study this, we conducted a 3-month in situ-controlled experiment in sub-Arctic Lake Mývatn, Iceland. We used the planktivorous fish three-spined sticklebacks (Gasterosteus aculeatus) as the main top predator. The cladocerans Eurycercus lamellatus and Acroperus harpae were significantly associated with fishless enclosures, whereas the rotifers Polyarthra sp. and Filinia terminalis were significantly associated with the fish enclosures. Fish predation led to a significant increase in phytoplankton biomass and a reduction in the zooplankton:phytoplankton biomass ratio, the mean zooplankton length and cladoceran mean biomass. Fish effects might have been stronger if a bloom of Anabaena in August had not overridden potential cascading effects. We argue that both top-down and bottom-up forces are important for structuring the communities in the lake. Our results suggest that Arctic and sub-Arctic lakes may undergo important changes in trophic dynamics if they get warmer and more nutrient rich as expected with the global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adalsteinsson, H., 1979. Size and food of Arctic char Salvelinus alpinus and stickleback Gasterosteus aculeatus in Lake Mývatn. Oikos JSTOR 32: 228–231.

    Article  Google Scholar 

  • Allen, M. B. & D. I. Arnon, 1955. Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiology 30: 366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, R. S., 1971. Crustacean plankton of 146 alpine and subalpine lakes and ponds in western Canada. Journal of the Fisheries Board of Canada 28: 311–321.

    Article  Google Scholar 

  • Anderson, R. S., 1972. Zooplankton composition and change in an alpine lake. Verhandlungen der Internationale Vereinigung der Limnologie 18: 264–268.

    Google Scholar 

  • Andersen, T., P. S. Cranston, & J. H. Epler (eds), 2013. Chironomidae of the Holarctic Region: keys and Diagnoses. In Part 1 - Larvae. Insect Systematics and Evolution Supplements. Entomological Society of Lund, Sweden, pp 573

  • Bartrons, M., Á. Einarsson, R. L. G. Nobre, C. M. Herren, K. C. Webert, S. Brucet, S. R. Ólafsdóttir & A. R. Ives, 2015. Spatial patterns reveal strong abiotic and biotic drivers of zooplankton community composition in Lake Mývatn, Iceland. Ecosphere 6: 1–20.

    Article  Google Scholar 

  • Bates, D., M. Mächler, B. Bolker, & S. Walker, 2014. Fitting linear mixed-effects models using lme4. arXiv preprint. arXiv:1406.5823.

  • Benjamini, Y. & Y. Hochberg, 2000. On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics 25: 60–83.

    Article  Google Scholar 

  • Benjamini, Y. & D. Yekutieli, 2001. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 29: 1165–1188.

    Article  Google Scholar 

  • Bottrell, H. H., 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.

    Google Scholar 

  • Brett, M. T. & C. R. Goldman, 1996. A meta-analysis of the freshwater trophic cascade. Proceedings of the National Academy of Sciences 93: 7723–7726.

    Article  CAS  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Brucet, S., D. Boix, L. W. Nathansen, X. D. Quintana, E. Jensen, D. Balayla, M. Meerhoff & E. Jeppesen, 2012. Effects of temperature, salinity and fish in structuring the macroinvertebrate community in shallow lakes: implications for effects of climate change. PLoS ONE 7: e30877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung, W. W. L., J. L. Sarmiento, J. Dunne, T. L. Frölicher, V. W. Y. Lam, M. L. D. Palomares, R. Watson & D. Pauly, 2013. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nature Climate Change 3: 254–258.

    Article  Google Scholar 

  • Christoffersen, K. S., S. L. Amsinck, F. Landkildehus, T. L. Lauridsen & E. Jeppesen, 2008. Lake flora and fauna in relation to ice-melt, water temperature and chemistry at Zackenberg. Advances in Ecological Research 40: 371–389.

    Article  Google Scholar 

  • De Cáceres, M., P. Legendre & M. Moretti, 2010. Improving indicator species analysis by combining groups of sites. Oikos 119: 1674–1684.

    Article  Google Scholar 

  • de Winter, J. C. F., 2013. Using the Student’s t-test with extremely small sample sizes. Practical Assessment, Research & Evaluation 18: 1–12.

    Google Scholar 

  • DeMott, W. R., 1989. The role of competition in zooplankton succession. In Sommer, U. (ed.), Plankton Ecology. Springer, Berlin: 195–252.

    Chapter  Google Scholar 

  • Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  • Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    Article  Google Scholar 

  • Einarsson, A., 2010. Fæðuvefur Mývatns. Náttúrufræðingurinn 79: 57–67.

    Google Scholar 

  • Einarsson, Á., G. Stefánsdóttir, H. Jóhannesson, J. S. Ólafsson, G. M. Gíslason, I. Wakana, G. Gudbergsson & A. Gardarsson, 2004. The ecology of Lake Myvatn and the River Laxá: variation in space and time. Aquatic Ecology 38: 317–348.

    Article  CAS  Google Scholar 

  • Emmrich, M., S. Pédron, S. Brucet, I. J. Winfield, E. Jeppesen, P. Volta, C. Argillier, T. L. Lauridsen, K. Holmgren, T. Hesthagen & T. Mehner, 2014. Geographical patterns in the body-size structure of European lake fish assemblages along abiotic and biotic gradients. Journal of Biogeography 41: 2221–2233.

    Article  Google Scholar 

  • Ger, K. A., P. Urrutia-Cordero, P. C. Frost & L.-A. Hansson, 2016. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 54: 128–144.

    Article  PubMed  Google Scholar 

  • Gislason, G. M., A. Gudmundsson & A. Einarsson, 1998. Population densities of the three-spined stickleback (Gasterosteus aculeatus L.) in a shallow lake. Verhandlungen der Internationale Vereinigung der Limnologie 26: 2244–2250.

    Google Scholar 

  • Gliwicz, Z. M., O. Kinne, & W. Lampert, 2003. Between Hazards of Starvation and Risk of Predation: the Ecology of offshore Animals. International Ecology Institute Oldendorf/Luhe.

  • González-Bergonzoni, I., F. Landkildehus, M. Meerhoff, T. L. Lauridsen, K. Özkan, T. A. Davidson, N. Mazzeo & E. Jeppesen, 2014. Fish determine macroinvertebrate food webs and assemblage structure in Greenland subarctic streams. Freshwater Biology 59: 1830–1842.

    Article  Google Scholar 

  • Hobbie, J. E. 1984. Polar limnology. In Taub, F. B. (ed) Lakes and Rivers. Ecosystems of the World. vol. 23, pp 63–104. Amsterdam: Elsevier.

  • Hobbie, J. E., B. J. Peterson, N. Bettez, L. Deegan, W. J. O’Brien, G. W. Kling, G. W. Kipphut, W. B. Bowden & A. E. Hershey, 1999. Impact of global change on the biogeochemistry and ecology of an Arctic freshwater system. Polar Research 18: 207–214.

    Article  Google Scholar 

  • Hobson, K. A. & H. E. Welch, 1995. Cannibalism and trophic structure in a high Arctic lake: insights from stable-isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences 52: 1195–1201.

    Article  Google Scholar 

  • Ives, A. R., Á. Einarsson, V. A. A. Jansen & A. Gardarsson, 2008. High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn. Nature 452: 84–87.

    Article  CAS  PubMed  Google Scholar 

  • Jeppesen, E., T. Lauridsen, S. F. Mitchell & C. W. Burns, 1997. Do planktivorous fish structure the zooplankton communities in New Zealand lakes? New Zealand Journal of Marine and Freshwater Research 31: 163–173.

    Article  Google Scholar 

  • Jeppesen, E., K. Christoffersen, F. Landkildehus, T. Lauridsen, S. L. Amsinck, F. Riget & M. Søndergaard, 2001. Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic charr (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids. Hydrobiologia 442: 329–337.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, C. Jensen, B. Faafeng, D. O. Hessen, M. Søndergaard, T. Lauridsen, P. Brettum & K. Christoffersen, 2003. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the arctic. Ecosystems 6: 313–325.

    Article  CAS  Google Scholar 

  • Jeppesen, E., T. Mehner, I. J. Winfield, K. Kangur, J. Sarvala, D. Gerdeaux, M. Rask, H. J. Malmquist, K. Holmgren & P. Volta, 2012. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 694: 1–39.

    Article  CAS  Google Scholar 

  • Jónasson, P. M., 1979. Ecology of eutrophic, subarctic Lake Myvatn and the River Laxa (Iceland): introduction. Oikos 32: 1–308.

    Google Scholar 

  • Jónasson, P. M., & H. Adalsteinsson, 1979. Phytoplankton Production in Shallow Eutrophic Lake Mývatn, Iceland. Oikos 32(1/2): 113–138.

  • Jónsson, E., A. Gardarsson & G. Gíslason, 1986. A new window trap used in the assessment of the flight periods of Chironomidae and Simuliidae (Diptera). Freshwater Biology 16: 711–719.

    Article  Google Scholar 

  • Knapp, R. A., K. R. Matthews & O. Sarnelle, 2001. Resistance and resilience of alpine lake fauna to fish introductions. Ecological monographs Eco Soc America 71: 401–421.

    Article  Google Scholar 

  • Leibold, M. A., 1989. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. American Naturalist 134: 922–949.

    Article  Google Scholar 

  • Lin, S.-J., L.-J. He, P.-S. Huang & B.-P. Han, 2005. Comparison and improvement on the extraction method for chlorophyll a in phytoplankton [J]. Ecologic Science 1: 2.

    Google Scholar 

  • Malley, D. F., 1989. Range of Variation in Estimates of Dry Weight for Planktonic Crustacea and Rotifera From Temperate North American Lakes: Canadian technical report of fisheries and aquatic sciences, no. 1666. Winnipeg : Fisheries and Oceans, Canada, p 49.

  • McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds.), A manual on methods for the assessment of secondary productivity in fresh waters. Blackwell, Oxford: 228–265.

    Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 43: 1571–1581.

    Article  Google Scholar 

  • Michelutti, N., A. P. Wolfe, R. D. Vinebrooke, B. Rivard & J. P. Briner, 2005. Recent primary production increases in arctic lakes. Geophysical Research Letters 32(19): L19715.

    Article  Google Scholar 

  • Millet, A., B. K. Kristjánsson, Á. Einarsson & K. Räsänen, 2013. Spatial phenotypic and genetic structure of threespine stickleback (Gasterosteus aculeatus) in a heterogeneous natural system, Lake Mývatn, Iceland. Ecology and Evolution 3: 3219–3232.

    PubMed  PubMed Central  Google Scholar 

  • Müller-Navarra, D. C., M. T. Brett, A. M. Liston & C. R. Goldman, 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403: 74–77.

    Article  PubMed  Google Scholar 

  • Murphy, J. & J. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Narum, S. R., 2006. Beyond Bonferroni: less conservative analyses for conservation genetics. Conservation Genetics 7: 783–787.

    Article  CAS  Google Scholar 

  • O’Brien, W. J., 1975. Some aspects of the limnology of the ponds and lakes of the Noatak drainage basin, Alaska. Verhandlungen der Internationale Vereinigund der Limnologie 19: 472–479.

    Google Scholar 

  • Ólafsson, J., 1979. Physical characteristics of lake Mývatn and river Laxá. Oikos 32: 38–66.

    Article  Google Scholar 

  • R Core Team. 2015. R: A language and environment for statistical computing. - R Foundation for Statistical Computing.

  • Rigler, F. H., 1975. The Char Lake project, an introduction to limnology in the Canadian Arctic. In: Cameron, T. W. M., & L. W. Billingsley (eds), Energy flow–it’s biological dimensions, A summary of the IBP in Canada 1964–1974. Royal Society of Canada, Ottawa, pp 171–198

  • Rist, S., 1979. Ecology of Eutrophic Subarctic, Lake Mývatn and the River Laxá. Oikos 32(1/2):67–81

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of plankton rotifers. Archiv für Hydrobiologie 8: 1–76.

    Google Scholar 

  • Sarnelle, O., 1992. Nutrient enrichment and grazer effects on phytoplankton in lakes. Ecology 73(2): 551–560.

    Article  Google Scholar 

  • Solorzano, L. & J. H. Sharp, 1980. Determination of total dissolved nitrogen in natural waters. Limnology and Oceanography 25: 751–754.

    Article  CAS  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106(4): 433–471.

  • Stross, R. G., M. C. Miller & R. J. Daley, 1980. Zooplankton: Communities, Life Cycles and Production. In Hobbie, J. E. (ed.), Limnology of tundra ponds, Barrow, Alaska. Dowden Hutchinson & Ross, Strousburg: 251–296.

    Google Scholar 

  • Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.

    Article  Google Scholar 

  • Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera. Invertébrés d'eau douce: systématique, biologie, écologie. vol. 15. Paris: CNRS éditions, 2000. 588 pp.

  • Throndsen, J., 1995. Estimating cell numbers. Manual on harmful marine microalgae. IOC Manuals and Guides UNESCO Paris 33: 63–80.

    Google Scholar 

  • Webster, K. E. & R. H. Peters, 1978. Some size-dependent inhibitions of larger cladoceran filterers in filamentous suspensions. Limnology and Oceanography 23: 1238–1245.

    Article  Google Scholar 

  • Winter, B., 2013. Linear models and linear mixed effects models in R with linguistic applications. arXiv preprint. arXiv:1308.5499.

Download references

Acknowledgements

We would like to thank Arnie Einarsson for his constant advice and assistance during fieldwork and for providing useful comments on this manuscript. We also want to thank the Mývatn Research Station (Iceland) for providing us with workspace and facilities to conduct this study. We would like to thank Elisabeth Badosa, Sergi Carrasco, Mariona Munné, Gisela Solà and Beatriz Tintoré for their hard work in the field and the laboratory. This project was supported by the Carlsberg Foundation (Project 2013_01_0535) and the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 (http://www.mars-project.eu). MC was supported by the People Program (Marie Curie Actions) of the Seventh Framework Program of the European Union (FP7/2007–2013) under grant agreement no. 600388 of REA (TECNIOspring Program) and the Agency for Competitiveness and Business of the Government of Catalonia, ACCIÓ. SB was supported by the Marie Curie Intra European Fellowship no. 330249 (CLIMBING) and by the project DFG, Me 1686/7-1. XQ’s contribution was supported by grants from the Spanish “Ministerio de Ciencia e Innovación” (CGL2011-23907) and the Generalitat de Catalunya (Ref. 2014 SGR 484).We thank Anne Mette Poulsen for valuable editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel Cañedo-Argüelles or Sandra Brucet.

Additional information

Handling editor: Karl E. Havens

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cañedo-Argüelles, M., Sgarzi, S., Arranz, I. et al. Role of predation in biological communities in naturally eutrophic sub-Arctic Lake Mývatn, Iceland. Hydrobiologia 790, 213–223 (2017). https://doi.org/10.1007/s10750-016-3031-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3031-0

Keywords

Navigation