, Volume 790, Issue 1, pp 157–166 | Cite as

When fear kicks in: predator cues initially do not but eventually do affect insect distribution patterns in a new artificial pond cluster

  • H. TrekelsEmail author
  • B. Vanschoenwinkel
Primary Research Paper


Evidence has accumulated that colonization of new habitats by aquatic insects is often selective rather than random. However, it is still unclear how habitat selection changes during a colonization sequence. We studied colonization of adult aquatic beetle and bug communities in cattle tanks exposed to fish predation or predation risk repeatedly over time. This allowed us to quantify the relative importance of habitat selection and consumption by a predator on communities. Habitat selection explained about 25 and 43% of the total predator effect on the final species richness and abundance, respectively. While other studies on fish cues affecting beetle colonization typically found effects on species richness in the first 3 weeks, we only saw a response after 6 weeks. The observed slower and weaker effects of predation risk on habitat selection by adults in the current study, conducted after the reproduction phase of aquatic beetles and bugs, might be due to seasonal variation in the response to predation risk. The relative importance of predation risk as a driver for habitat selection might be lower outside the reproduction period when the most vulnerable life stages are absent.


Aquatic insects Colonization Community assembly Fish predator Habitat selection Predation risk 



We thank two anonymous reviewers for their contributions to improving the final manuscript substantially. We also thank the nature conservation organization Natuurpunt (section Hasselt-Zonhoven) for granting access to the Nature Reserve of Tommelen. HT is supported as a postdoctoral fellow by the Research Foundation - Flanders (FWO), Grant No. 12N0415N.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10750_2016_3027_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 37 kb)


  1. Åbjörnsson, K., B. M. A. Wagner, A. Axelsson, R. Bjerselius & K. H. Olsén, 1997. Responses of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis). Oecologia 111: 166–171.CrossRefGoogle Scholar
  2. Åbjörnsson, K., C. Bronmark & L. A. Hansson, 2002. The relative importance of lethal and non-lethal effects of fish on insect colonisation of ponds. Freshwater Biology 47: 1489–1495.CrossRefGoogle Scholar
  3. Baines, C. B., S. J. McCauley & L. Rowe, 2014. The interactive effects of competition and predation risk on dispersal in an insect. Animal Behaviour 210: 3236–3244.Google Scholar
  4. Baines, C. B., S. J. McCauley & L. Rowe, 2015. Dispersal depends on body condition and predation risk in the semi-aquatic insect, Notonecta undulata. Ecology and Evolution 5: 2307–2316.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baker, R. R., 1978. The evolutionary ecology of animal migration. Hodder & Stoughton, London.Google Scholar
  6. Barton, B. T., 2010. Climate warming and predation risk during herbivore ontogeny. Ecology 91: 2811–2818.CrossRefPubMedGoogle Scholar
  7. Bell, R. D., A. L. Rypstra & M. H. Persons, 2006. The effect of predator hunger on chemically mediated antipredator responses and survival in the wolf spider Pardosa milvina (Araneae: Lycosidae). Ethology 112: 903–910.CrossRefGoogle Scholar
  8. Binckley, C. A. & W. J. Resetarits, 2005. Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. Biology Letters 1: 370–374.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Blaustein, L., M. Kiflawi, A. Eitam, M. Mangel & J. E. Cohen, 2004. Oviposition habitat selection in response to risk of predation in temporary pools: mode of detection and consistency across experimental venue. Oecologia 138: 300–305.CrossRefPubMedGoogle Scholar
  10. Blaustein, J., A. Sadeh & L. Blaustein, 2014. Influence of fire salamander larvae on among-pool distribution of mosquito egg rafts: oviposition habitat selection or egg raft predation? Hydrobiologia 723: 157–165.CrossRefGoogle Scholar
  11. Boda, P. & Z. Csabai, 2013. When do beetles and bugs fly? A unified scheme for describing seasonal flight behaviour of highly dispersing primary aquatic insects. Hydrobiologia 703: 133–147.CrossRefGoogle Scholar
  12. Brodin, T., F. Johansson & J. Bergsten, 2006. Predator related oviposition site selection of aquatic beetles (Hydroporus spp.) and effects on offspring life-history. Freshwater Biology 51: 1277–1285.CrossRefGoogle Scholar
  13. Creel, S. & D. Christianson, 2008. Relationships between direct predation and risk effects. Trends in Ecology and Evolution 23: 194–201.CrossRefPubMedGoogle Scholar
  14. Drost, B., H. Cuppen, E. van Nieukerken & M. Schreijer, 1992. De waterkevers van Nederland. KNNV Uitgeverij, Utrecht.Google Scholar
  15. Florencio, M., C. Diaz-Paniagua, C. Gómez-Rodriguez & L. Serrano, 2014. Biodiversity patterns in a macroinvertebrate community of a temporary pond network. Insect Conservation and Diversity 7: 4–21.CrossRefGoogle Scholar
  16. Fretwell, S. D. & H. L. Lucas, 1969. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheoretica 19: 16–36.CrossRefGoogle Scholar
  17. Garcia, E. A. & G. G. Mittelbach, 2008. Regional coexistence and local dominance in Chaoborus: species sorting along a predation gradient. Ecology 89: 1703–1713.CrossRefPubMedGoogle Scholar
  18. Hammill, E., T. B. Atwood & D. S. Srivastava, 2015. Predation threat alters composition and functioning of bromeliad ecosystems. Ecosystems 18: 857–866.CrossRefGoogle Scholar
  19. Kraus, J. M. & J. R. Vonesh, 2010. Feedbacks between community assembly and habitat selection shape variation in local colonization. Journal of Animal Ecology 79: 795–802.PubMedGoogle Scholar
  20. McCauley, S. J. & L. Rowe, 2010. Notonecta exhibit threat-sensitive, predator-induced dispersal. Biology Letters 6: 449–452.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ohba, S. Y. & H. Takagi, 2005. Food shortage affects flight migration of the giant water bug Lethocerus deyrolli in the prewintering season. Limnology 6: 85–90.CrossRefGoogle Scholar
  22. Peckarsky, B. L., B. L. Kerans, B. W. Taylor & A. R. McIntosh, 2008. Predator effects on prey population dynamics in open systems. Oecologia 156: 431–440.CrossRefPubMedGoogle Scholar
  23. Petranka, J. W. & K. Fakhoury, 1991. Evidence of a chemically-mediated avoidance response of ovipositing insects to blue-gills and green frog tadpoles. Copeia 1991: 234–239.CrossRefGoogle Scholar
  24. Preisser, E. L., J. L. Orrock, O. J. Schmitz, L. Preisser, L. Orrock & J. Schmitz, 2007. Predator hunting mode and habitat domain alter nonconsumptive effects in predator–prey interactions. Ecology 88: 2744–2751.CrossRefPubMedGoogle Scholar
  25. Resetarits, W. J., 2001. Colonization under threat of predation: avoidance of fish by an aquatic beetle, Tropisternus lateralis (Coleoptera: Hydrophilidae). Oecologia 129: 155–160.CrossRefGoogle Scholar
  26. Resetarits, W. J. & C. A. Binckley, 2009. Spatial contagion of predation risk affects colonization dynamics in experimental aquatic landscapes. Ecology 90: 869–876.CrossRefPubMedGoogle Scholar
  27. Resetarits, W. J. & C. A. Binckley, 2013a. Is the pirate really a ghost? Evidence for generalized chemical camouflage in an aquatic predator, pirate perch Aphredoderus sayanus. The American Naturalist 181: 690–699.CrossRefPubMedGoogle Scholar
  28. Resetarits, W. J. & C. A. Binckley, 2013b. Patch quality and context, but not patch number, drive multi-scale colonization dynamics in experimental aquatic landscapes. Oecologia 173: 933–946.CrossRefPubMedGoogle Scholar
  29. Resetarits, W. J. & C. A. Binckley, 2014. Species responses of colonising beetles to variation in patch quality, number, and context in experimental aquatic landscapes. Ecological Entomology 39: 226–235.CrossRefGoogle Scholar
  30. Rosenzweig, M. L., 1991. Habitat selection and population interactions: the search for mechanism. The American Naturalist 137: S5–S28.CrossRefGoogle Scholar
  31. Sitvarin, M. I., A. L. Rypstra & J. D. Harwood, 2016. Linking the green and brown worlds through nonconsumptive predator effects. Oikos 125: 1057–1068.CrossRefGoogle Scholar
  32. Stauffer, H.-P. & R. D. Semlitsch, 1993. Effects of visual, chemical and tactile fish cues on behavioral responses of tadpoles. Animal Behaviour 46: 355–364.CrossRefGoogle Scholar
  33. Stoffelen, E., H. Henderickx, T. Vercauteren, K. Lock & R. Bosmans, 2013. De water—en oppervlaktewantsen van België. KBIN, Brussels.Google Scholar
  34. Trekels, H., F. Van de Meutter & R. Stoks, 2013. Predator cues magnify effects of the pesticide endosulfan in water bugs in a multi-species test in outdoor containers. Aquatic Toxicology 138–139: 116–122.CrossRefPubMedGoogle Scholar
  35. Verreycken, H., D. Anseeuw, D. Thuyne, P. Quataert Van & C. Belpaire, 2007. The non-indigenous freshwater fishes of Flanders (Belgium): review, status and trends over the last decade. Journal of Fish Biology 71: 160–172.CrossRefGoogle Scholar
  36. Vonesh, J. R. & L. Blaustein, 2011. Predator-induced shifts in mosquito oviposition site selection: a meta-analysis and implications for vector control. Israel Journal of Ecology and Evolution 56: 263–279.CrossRefGoogle Scholar
  37. Wesner, J. S., E. J. Billman & M. C. Belk, 2012. Multiple predators indirectly alter community assembly across ecological boundaries. Ecology 93: 1674–1682.CrossRefPubMedGoogle Scholar
  38. Wesner, J. S., P. Meyers, E. J. Billman & M. C. Belk, 2015. Habitat selection and consumption across a landscape of multiple predators. Ecology and Evolution 5: 121–129.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Community Ecology Lab, Department of BiologyVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations