, Volume 790, Issue 1, pp 35–48 | Cite as

The influence of inundation and lake morphometry on the dynamics of mercury in the water and plankton in an Amazon floodplain lake

  • Brendson C. BritoEmail author
  • Bruce R. Forsberg
  • Daniele Kasper
  • João H. F. Amaral
  • Moema R. R. de Vasconcelos
  • Otávio P. de Sousa
  • Fábio A. G. Cunha
  • Wanderley R. Bastos
Primary Research Paper


Seasonal flooding changes chemical and morphometric characteristics of the tropical floodplain lakes, affecting stratification which can influence mercury dynamics. We investigate the influence of flooding on the mercury dynamics in an Amazon floodplain lake. Three points on the lake, the Solimões River, and the connecting channel to the river were sampled along the annual flood pulse. During high-water, the lake was deep (12.7 m, on average) and the area farthest from the river was stratified with low oxygen and high methylmercury concentrations ([MeHg]) at depths below 7 m (0.37 ng l−1, on average). The two sites closest to the river were destratified and the [MeHg] was lower (0.077 ng l−1, on average along all depths). At low-water, the lake was shallower (3 m, on average) and destratified, with higher oxygen concentrations, and no difference in [MeHg] along the water column at all lake sites. Independent of season, the [MeHg] in the connecting channel was higher than those in the river. The [MeHg] in phytoplankton varied in response to changes in biomass, showing a biodilution effect. Variations in lake morphometry controlled the stratification and [MeHg] in the lake during the high-water. Floodplain lakes export hypolimnetic MeHg to their associated rivers during high-water.


Flood pulse Stratification Biodilution Methylmercury Janauacá Solimões basin 



The authors acknowledge the financial support of CNPq, CAPES, and FAPEAM and the logistics of INPA. We also thank J. Rocha and L. Pinheiro for their support in the field work, the Laboratório de Biogeoquímica Ambiental (UNIR) for the help with mercury analyses, and Laboratório de Química Ambiental (INPA) for the help with DOC analyses.

Supplementary material

10750_2016_3017_MOESM1_ESM.doc (34 kb)
Appendix A Supplementary material 1 (DOC 34 kb)
10750_2016_3017_MOESM2_ESM.doc (820 kb)
Appendix B Supplementary material 2 (DOC 820 kb)
10750_2016_3017_MOESM3_ESM.doc (1.2 mb)
Appendix C Supplementary material 3 (DOC 1216 kb)
10750_2016_3017_MOESM4_ESM.doc (368 kb)
Appendix D Supplementary material 4 (DOC 368 kb)
10750_2016_3017_MOESM5_ESM.doc (32 kb)
Appendix E Supplementary material 5 (DOC 32 kb)


  1. Almeida, R., 2012. Estudo da origem, mobilização e organificação do mercúrio no reservatório da UHE de Samuel, RO. Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ.Google Scholar
  2. Almeida, R., J. V. E. Bernardi, R. C. Oliveira, D. P. Carvalho, A. G. Manzatto, L. D. Lacerda & W. R. Bastos, 2014. Flood pulse and spatial dynamics of mercury in sediments in Puruzinho lake, Brazilian Amazon. Acta Amazonica 44: 99–106.CrossRefGoogle Scholar
  3. Balogh, S. J., E. B, Swain & Y. H. Nollet, 2008. Characteristics of mercury speciation in Minnesota rivers and streams. Environmental Pollution 154: 3–11.Google Scholar
  4. Barbosa, A. C., J. de Souza, J. G. Dórea, W. F. Jardim & P. S. Fadini, 2003. Mercury Biomagnification in a Tropical Black Water, Rio Negro, Brazil. Archives of Environmental Contamination and Toxicology 45(2): 235–246.CrossRefPubMedGoogle Scholar
  5. Belger, L. & B. R. Forsberg, 2006. Factors controlling Hg levels in two predatory fish species in the Negro river basin, Brazilian Amazon. Science of Total Environmental 367: 451–459.CrossRefGoogle Scholar
  6. Beltran, P. S., J. Zuanon, R. G. Leite, J. R. P. Peleja, A. B. Mendonça & B. R. Forsberg, 2011. Mercury bioaccumulation in fish of commercial importance from different trophic categories in an Amazon floodplain lake. Neotropical Ichthyology 9: 901–908.CrossRefGoogle Scholar
  7. Bisinoti, M. C., W. F. Jardim & E. J. Sargentini, 2007. Seasonal behavior of mercury species in waters and sediments from the Negro River Basin. Journal of the Brazilian Chemical Society 18: 544–553.CrossRefGoogle Scholar
  8. Bonnet, M. P., G. Barroux, J. M. Martinez, F. Seyler, P. Moreira-Turcq, G. Cochonneau, J. Melack, G. Boaventura, L. Maurice-Bourgoin, J. G. Leon, E. Roux, S. Calmant, P. Kosuth, J. L. Guyot & P. Seyler, 2008. Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuaí). Journal of Hydrology 349: 18–30.CrossRefGoogle Scholar
  9. Brigham, M. E., D. A. Wentz, G. R. Aiken & D. P. Krabbenhoft, 2009. Mercury cycling in stream ecosystems. 1. Water column chemistry and transport. Environmental Science & Technology 43: 2720–2725.CrossRefGoogle Scholar
  10. Chen, C. Y. & C. L. Folt, 2005. High plankton densities reduce mercury biomagnification. Environmental Science & Technology 39: 115–121.CrossRefGoogle Scholar
  11. Correia, R. R. S., M. R. Miranda & J. R. D. Guimarães, 2012. Mercury methylation and the microbial consortium in periphyton of tropical macrophytes: effect of different inhibitors. Environmental Research 112: 86–91.CrossRefPubMedGoogle Scholar
  12. Eckley, C. S. & H. Hintelmann, 2005. Determination of mercury methylation potentials in the water column of lakes across Canada. Science of the Total Environment 368: 111–125.CrossRefPubMedGoogle Scholar
  13. EPA Method 1669, 1996. Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels. United States Environmental Protection Agency, Washington, DC.Google Scholar
  14. EPA Method 1630, 2001. Methyl Mercury in Water by Distillation, Aqueous Ethylation, Purge and Trap, and CVAFS. United States Environmental Protection Agency, Washington, DC.Google Scholar
  15. EPA Method 1631, 2002. Revision E: Mercury in Water by oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. United States Environmental Protection Agency, Washington, DC.Google Scholar
  16. Fadini, P. S. & W. F. Jardim, 2000. Storage of natural water samples for total and reactive mercury analysis in PET bottles. Analyst 125: 549–551.CrossRefGoogle Scholar
  17. Farr, T. G., P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank & D. Alsdorf, 2007. The shuttle radar topography mission. Review of Geophysics 45: 1–33.CrossRefGoogle Scholar
  18. Fisher, N. S. & S. E. Hook, 2002. Toxicology tests with aquatic animals need to consider the trophic transfer of metals. Toxicology 181: 531–536.CrossRefPubMedGoogle Scholar
  19. Fisher, T. R. & P. E. Parsley, 1979. Amazon lakes: water storage and nutrient stripping by algae. Limnology and Oceanography 24: 547–553.CrossRefGoogle Scholar
  20. Forsberg, B. R., C. A. R. M. Araujo-Lima, L. A. Martinelli, R. L. Victoria & J. A. Bonassi, 1993. Autotrophic carbon sources for fish of the central Amazon. Ecology 74: 643–652.CrossRefGoogle Scholar
  21. Forsberg, B. R., A. H. Devol, J. E. Richey, L. A. Martinelli & H. Santos, 1988. Factors controlling nutrient levels in Amazon floodplain lakes. Limnology and Oceanography 33: 41–56.CrossRefGoogle Scholar
  22. Gilmour, C. C., M. Podar, A. L. Bullock, A. M. Graham, S. D. Brown, A. C. Somenahally, A. Johs, R. A. Hurt, K. L. Bailey & D. A. Elias, 2013. Mercury methylation by novel microorganisms from new environments. Environmental Science & Technology 47: 11810–11820.CrossRefGoogle Scholar
  23. Guimarães, J. R. D., M. Markus, M. L. D. Hylander, E. C. Silva, M. Roulet, J. B. N. Mauro & R. A. Lemos, 2000. Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils. Science of the Total Environment 261: 99–107.CrossRefPubMedGoogle Scholar
  24. Hess, L. L., J. M. Melack, E. M. L. M. Novo, C. C. F. Barbosa & M. Gastil, 2003. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment 87: 404–428.CrossRefGoogle Scholar
  25. Hess, L. L., J. M. Melack, A. G. Affonso, C. Barbosa, M. Gastil-Buhl & E. M. L. M. Novo, 2015. Wetlands of the Lowland Amazon Basin: extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 synthetic aperture radar. Wetlands 35: 745–756.CrossRefGoogle Scholar
  26. Junk, J., J. Bayley & P. B. Sparks, 1989. The flood pulse concept in river – Floodplain systems. In Dodge, D. P. (ed.), Proceedings of the International Large River Symposium (LARS). Special Publication of Fisheries and Aquatic Sciences, Ottawa, Canadá 1989: 110–127.Google Scholar
  27. Kasper, D., 2014. Dinâmica sazonal do metilmercúrio em ecossistemas fluviais amazônicos. Ph. D. Thesis, INPA, Manaus, AM.Google Scholar
  28. Kasper, D., B. R. Forsberg, J. H. F. Amaral, R. P. Leitão, S. P. Py-Daniel, W. R. Bastos & O. Malm, 2014. Reservoir stratification affects methylmercury levels in river water, plankton, and fish downstream from balbina hydroelectric dam, Amazonas, Brazil. Environmental Science & Technology 48: 1032–1040.CrossRefGoogle Scholar
  29. Kasper, D., B. R. Forsberg, R. Almeida, W. R. Bastos & O. Malm, 2015. Methodologies for sampling, preservation and storage of water samples for mercury analysis – A review. Química Nova 38: 410–418.Google Scholar
  30. Kerin, E. J., C. C. Gilmour, E. Roden, M. T. Suzuki, J. D. Coates & R. P. Mason, 2006. Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology 72: 7919–7921.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Maia, P. D., L. Maurice, E. Tessier, D. Amouroux, D. Cossa, M. Perez, P. Moreira-Turcq & I. Rheault, 2009. Mercury distribution and exchanges between the Amazon River and connected floodplain lakes. Science of the Total Environment 407: 6073–6084.CrossRefPubMedGoogle Scholar
  32. Melack, J. M., 1984. Amazon floodplain lakes: shape, fetch, and stratification. Verhand ungen des International en Verein Limnologie 22: 1278–1282.Google Scholar
  33. Melack, J. M. & T. R. Fisher, 1990. Comparative limnology of tropical floodplain lakes with an emphasis on the Central Amazon. Acta Limnologica Brasiliensia 3: 1–48.Google Scholar
  34. Miller, J. N. & J. N. Miller (eds), 1994. Statistics for Analytical Chemistry, 4th, ed. Ellis Horwood, Great Britain: 296.Google Scholar
  35. Miranda, E. C. A., 2013. Influência do pulso de inundação do rio Solimões sobre os processos geoquímicos e comunidade fitoplanctônica do lago Janauacá, Amazonas, Brasil. Ph. D. Thesis, UnB, Brasília, DF.Google Scholar
  36. Moreira-Turcq, P., M. -P. Bonnet, M. Amorim, M. Bernardes, C. Lagane, L. Maurice, M. Perez & P. Seyler, 2013. Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River. Global Biogeochemical Cycles 27: 1–12.CrossRefGoogle Scholar
  37. Mortillaro, J. M., G. Abril, P. Moreira-Turc, R. Sobrinho, M. Perez & T. Meziane, 2011. Fatty acid and stable isotope (d13C, d15N) signatures of particulate organic matter in the Lower Amazon River: seasonal contrasts and connectivity between floodplain lakes and the mainstem. Organic Geochemistry 42: 1159–1168.CrossRefGoogle Scholar
  38. Muresan, B., D. Cossa, S. Richard & Y. Dominique, 2008. Monomethylmercurysources in a tropical artificial reservoir. Applied Geochemistry 23: 1101–1126.CrossRefGoogle Scholar
  39. Nascimento, E. L., J. P. O. Gomes, R. Almeida, W. R. Bastos, J. V. E. Bernardi & R. K. Miyai, 2007. Mercúrio no plâncton de um lago natural amazônico, Lago Puruzinho (Brasil). Journal of the Brazilian Society of Ecotoxicology 2: 67–72.CrossRefGoogle Scholar
  40. Novo, E. M. L. M., C. C. F. Barbosa, R. M. Freitas, J. Melack, Y. E. Shimabukuru & W. P. Filho, 2005. Distribuição sazonal de fitoplâncton no Lago Grande de Curuai em resposta ao pulso de inundação do Rio Amazonas a partir da análise de imagens MODIS. Anais XII Simpósio Brasileiro de Sensoriamento Remoto: 3175–3182.Google Scholar
  41. Pickhardt, P. C., C. L. Folt, C. Y. Chen, B. Klaue & J. D. Blum, 2005. Impacts of zooplankton composition and algal enrichment on theaccumulation of mercury in an experimental freshwater food web. Science of the Total Environment 339: 89–101.CrossRefPubMedGoogle Scholar
  42. Razavi, N. R., M. Qu, D. Chen, Y. Zhong, W. Ren, Y. Wang & L. M. Campbell, 2015. Effect of eutrophication on mercury (Hg) dynamics in subtropical reservoirs from a high Hg depositation ecoregion. Limnology and Oceanography 60: 386–401.CrossRefGoogle Scholar
  43. Richey, J. E., J. I. Hedges, A. H. Devol & P. D. Quay, 1990. Biogeochemistry of carbon in the Amazon River. Limnology and Oceanography 35: 352–371.CrossRefGoogle Scholar
  44. Roach, K. A., F. N. Jacobsen, V. C. Fiorello, A. Stronza & K. O. Winemiller, 2013. Gold Mining and mercury bioaccumulation in a floodplain lake and main channel of the Tambopata River, Perú. Journal of Environmental Protection 4: 51–60.CrossRefGoogle Scholar
  45. Roulet, M., J. R. D. Guimarães & M. Loucotte, 2001. Methylmercury production and accumulation in sediments and soils of an Amazonian floodplain – Effect of seasonal inundation. Water, Air, Soil Pollution 128: 41–60.CrossRefGoogle Scholar
  46. Roulet, M., M. Lucotte, A. S. Aubin, S. Tran, I. Rhéault, N. Farella, E. J. Silva, J. Dezencourt, C. J. Passos, G. S. Soares, J. R. D. Guimarães & D. M. Amorim, 1998. The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chão formation of the lower Tapajós River Valley, Pará state, Brazil. Science of the Total Environment 223: 1–24.CrossRefPubMedGoogle Scholar
  47. Roulet, M., M. Lucotte, N. Farella, G. Serique, H. Coelho, P. C. J. Sousa, S. E. Jesus, P. S. Andrade, D. Mergler, J. R. D. Guimarães & M. Amorim, 1999. Effects of recent human colonization on the presence of mercury in Amazonian ecosystems. Water, Air, Soil Pollution 112: 297–313.CrossRefGoogle Scholar
  48. Sampaio, S. D., M. Lucotte, S. Paquet & R. Davidson, 2009. Influence of ecological factors and of land use on mercury levels in fish in the Tapajós River basin, Amazon. Environmental Research 109: 432–446.CrossRefGoogle Scholar
  49. Schmidt, G. W., 1973. Primary production of phytoplankton in the three types of Amazonian waters. III Primary productivity of phytoplankton in a tropical flood-plain lake of Central Amazonia, Lago do Castanho, Amazonas, Brasil. Amazoniana 4: 379–404.Google Scholar
  50. Silva-Forsberg, M. C., B. R. Forsberg & V. K. Zeideman. 1999. Mercury contamination in humans linked to river chemistry in the Amazon basin. Ambio 28: 519–521.Google Scholar
  51. Stallard, R. F. & J. M. Edmond, 1983. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research 88: 9671–9688.CrossRefGoogle Scholar
  52. Trevisan, G. V. & B. R. Forsberg, 2007. Relationship among nitrogen and total phosphorus, algal biomass and zooplankton density in the central amazonia lakes. Hydrobiologia 568: 357–365.CrossRefGoogle Scholar
  53. Tsui, M. T. K. & W. X. Wang, 2004. Uptake and elimination routes of inorganic mercury and methylmercury in Daphnia magna. Environmental Science & Technology 38: 808–816.CrossRefGoogle Scholar
  54. UNEP, 2013. Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, Geneva, Switzerland: 32.Google Scholar
  55. Watras, C. J., N. S. Bloom, S. A. Claas, K. A. Morrison, C. C. Gilmour & S. R. Craig, 1995. Methylmercury production in the anoxic hypolimnion of a dimictic seepage lake. Water, Air, Soil Pollution 80: 735–745.CrossRefGoogle Scholar
  56. Zúñiga, U. F. R., 2006. Avaliação da influência de fatores ambientais na estrutura, dinâmica e propriedades ópticas das substâncias húmicas aquáticas do rio negro. Thesis, Universidade de São Paulo, São Carlos, SP.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Brendson C. Brito
    • 1
    • 2
    Email author
  • Bruce R. Forsberg
    • 2
  • Daniele Kasper
    • 2
  • João H. F. Amaral
    • 2
  • Moema R. R. de Vasconcelos
    • 2
  • Otávio P. de Sousa
    • 2
  • Fábio A. G. Cunha
    • 2
  • Wanderley R. Bastos
    • 3
  1. 1.Instituto Federal de Educação Ciência e Tecnologia do ParáItaitubaBrazil
  2. 2.Laboratório de Ecossistemas AquáticosInstituto Nacional de Pesquisas da AmazôniaManausBrazil
  3. 3.Laboratório de Biogeoquímica Ambiental Wolfgang Christian PfeifferUniversidade Federal de RondôniaPorto VelhoBrazil

Personalised recommendations