Skip to main content

Advertisement

Log in

The roles of environment, site position, and seasonality in taxonomic and functional organization of chironomid assemblages in a heterogeneous wetland, Kis-Balaton (Hungary)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Environmental heterogeneity plays a determinant role in structuring taxonomic and functional composition of local assemblages via various interacting processes as synthesized in the metacommunity theory. In this study, we evaluate the relative roles of local environmental and landscape filters, spatial constraints and seasonality in organization of assemblages of Chironomidae (Diptera), a diverse aquatic insect group with winged adults, in an extremely heterogeneous wetland system, Kis-Balaton, Hungary. As expected, local environmental variables explained a substantial proportion of assemblage variance mainly along sediment structure, macrophyte coverage, and decomposing plant matter gradients. Considering the narrow spatial range of the study area, pure spatial influence was unexpectedly strong, likely because of the dispersal limitation related to tall terrestrial vegetation patches and mass effect related to the uneven distribution and area of certain microhabitats and their species pools. However, landscape- and season-related variability proved to be low or negligible. Taxonomic and functional feeding guild (FFG)-based approaches revealed the same main trends in assemblage data; however, FFGs seemed to track environmental changes more tightly. We argue for the common use of taxonomic and functional-based approaches and advise the improvement of species optima and tolerance spectra databases to expand bioassessment power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali, A., J. Frouz & R. J. Lobinske, 2002. Spatio-temporal effects of selected physico-chemical variables of water, algae and sediment chemistry on the larval community of nuisance Chironomidae (Diptera) in a natural and a man-made lake in central Florida. Hydrobiologia 470: 181–193.

    Article  Google Scholar 

  • Aminot, A. & F. Rey, 2000. Standard Procedure for the Determination of Chlorophyll-a by Spectroscopic Methods. International Council for the Exploration of Sea, Denmark.

    Google Scholar 

  • Anderson, R. O., 1959. A modified flotation technique for sorting bottom fauna samples. Limnology and Oceanography 4: 223–225.

    Article  Google Scholar 

  • Árva, D., M. Tóth, H. Horváth, S. A. Nagy & A. Specziár, 2015a. The relative importance of spatial and environmental processes in distribution of benthic chironomid larvae within a large and shallow lake. Hydrobiologia 742: 249–266.

    Article  Google Scholar 

  • Árva, D., A. Specziár, T. Erős & M. Tóth, 2015b. Effects of habitat types and within lake environmental gradients on the diversity of chironomid assemblages. Limnologica 53: 26–34.

    Article  Google Scholar 

  • Batzer, D. P. & S. A. Wissinger, 1996. Ecology of insect communities in nontidal wetlands. Annual Reviews of Entomology 41: 75–100.

    Article  CAS  Google Scholar 

  • Beisner, B. E., P. R. Peres-Neto, E. S. Lindström, A. Barnett & M. R. Longht, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.

    Article  PubMed  Google Scholar 

  • Bíró, K., 1981. A guide for the identification of chironomid larvae in Hungary. In Felföldy, L. (ed.), Hydrobiology for Water Management Praxis, Vol. 11. VÍZDOK, Budapest: 1–229 (in Hungarian).

    Google Scholar 

  • Bitušík, P. & M. Svitok, 2006. Structure of chironomid assemblages along environmental and geographical gradients in the Bohemian Forest lakes (Central Europe): an exploratory analysis. Biologia, Bratislava 61: 467–476.

    Google Scholar 

  • Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrix. Ecological Modelling 153: 51–68.

    Article  Google Scholar 

  • Borcard, D., P. Legendre, C. Avois-Jacquet & H. Toumisto, 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826–1832.

    Article  Google Scholar 

  • Brown, B. L., 2007. Habitat heterogeneity and disturbance influence patterns of community temporal variability in a small temperate stream. Hydrobiologia 586: 93–106.

    Article  Google Scholar 

  • Brundin, L., 1958. The bottom faunistical lake type system and its application to the southern hemisphere. Moreover a theory of glacial erosion as a factor of productivity in lakes and oceans. Verhandlungen der Internationalen Vereinigung für Limnologie 13: 288–297.

    Google Scholar 

  • Capers, R. S., R. Selsky & G. J. Bugbee, 2009. The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshwater Biology 55: 952–966.

    Article  Google Scholar 

  • Cohen, J. E., R. A. Beaver, S. H. Cousins, D. L. DeAngelis, L. Goldwasser, K. L. Heong, R. D. Holt, A. J. Kohn, J. H. Lawton, N. Martinez, R. O’Malley, L. M. Page, B. C. Patten, S. L. Pimm, G. A. Polis, M. Rejmánek, T. W. Schoener, K. Schoenly, W. G. Sprules, J. M. Teal, R. E. Ulanowicz, P. H. Warren, H. W. Wilbur & P. Yodzis, 1993. Improving food webs. Ecology 74: 252–258.

    Article  Google Scholar 

  • Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.

    Article  PubMed  Google Scholar 

  • Cranston, P. S., 1982. A Key to the Larvae of the British Orthocladiinae (Chironominae)., Freshwater Biological Association Scientific Publication 45 The Freshwater Biological Association, Ambleside.

    Google Scholar 

  • Cserny, T. & E. Nagy-Bodor, 2000. Limnogeological Investigations on Lake Balaton. In Gierlowski-Kordesch, E. & K. Kelts (eds), Lake Basins Through Space and Time. AAPG Studies in Geology 46: 605–618.

  • Cummins, K. W., M. A. Wilzbach, D. M. Gates, J. B. Perry & W. B. Taliaferro, 1989. Shredders and riparian vegetation. BioScience 39: 24–30.

    Article  Google Scholar 

  • Cummins, K. W., R. W. Merritt & P. C. N. Andrade, 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment 40: 69–89.

    Article  Google Scholar 

  • Cushman, S. A. & K. McGarigal, 2002. Hierarchical, multi-scale decomposition of species-environment relationships. Landscape Ecology 17: 637–646.

    Article  Google Scholar 

  • Czech Hydrometeorological Institute, 2009. Arrow: assessment and reference reports of water monitoring (Czech approach). Online database, Prague. http://hydro.chmi.cz/isarrow/index.php?lng=eng. (July 2015).

  • Delettre, Y. R. & N. Morvan, 2000. Dispersal of adult aquatic Chironomidae (Diptera) in agricultural landscapes. Freshwater Biology 44: 399–411.

    Article  Google Scholar 

  • Delettre, Y., P. Tréhen & P. Grootaert, 1992. Space heterogeneity, space use and short range dispersal in Diptera: a case study. Landscape Ecology 6: 175–181.

    Article  Google Scholar 

  • Dray, S., P. Legendre & P. R. Peres-Neto, 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrix (PCNM). Ecological Modelling 196: 483–493.

    Article  Google Scholar 

  • Euliss, N. H., L. M. Smith, D. A. Wilcox & B. A. Browne, 2008. Linking ecosystem processes with wetland management goals: charting a course for a sustainable future. Wetlands 28: 553–562.

    Article  Google Scholar 

  • Ferrington Jr., L. C., 2008. Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 595: 444–455.

    Google Scholar 

  • Free, G., A. G. Solimini, B. Rossaro, L. Marziali, R. Giacchini, B. Paracchini, M. Ghiani, S. Vaccaro, B. M. Gawlik, R. Fresner, G. Santner, M. Schönhuber & A. C. Cardoso, 2009. Modelling lake macroinvertebrate species in the shallow sublittoral: relative roles of habitat, lake morphology, aquatic chemistry and sediment composition. Hydrobiologia 633: 123–136.

    Article  CAS  Google Scholar 

  • Gajewski, K., G. Bouchard, S. E. Wilson, J. Kurek & L. C. Cwynar, 2005. Distribution of Chironomidae (Insecta: Diptera) head capsules in recent sediments of Canadian Arctic lakes. Hydrobiologia 549: 131–143.

    Article  Google Scholar 

  • García-Roger, E. M., M. M. Sánchez-Montoya, R.- Gómez, M. L. Suárez, M. R. Vidal-Abarca, J. Latron, M. Rieradevall & N. Prat, 2011. Do seasonal changes in habitat features influence aquatic macroinvertebrate assemblages in perennial versus temporary Mediterranean streams? Aquatic Sciences 73: 567–579.

    Article  Google Scholar 

  • Grönroos, M., J. Heino, T. Siqueira, V. L. Landeiro, J. Kotanen & L. M. Bini, 2013. Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental context. Ecology and Evolution 3: 4473–4487.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.

    Google Scholar 

  • Hawkins, C. P. & J. R. Sedell, 1981. Longitudinal and seasonal changes in functional organization of macroinvertebrate communities in four Oregon streams. Ecology 62: 387–397.

    Article  Google Scholar 

  • Heino, J., 2005. Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshwater Biology 50: 1578–1587.

    Article  Google Scholar 

  • Heino, J., 2008. Patterns of functional biodiversity and function-environment relationships in lake littoral macroinvertebrates. Limnology and Oceanography 53: 1446–1455.

    Article  Google Scholar 

  • Heino, J., 2013a. Environmental heterogeneity, dispersal mode, and co-occurrence in stream macroinvertebrates. Ecology and Evolution 3: 344–355.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heino, J., 2013b. Does dispersal ability affect the relative importance of environmental control and spatial structuring of littoral macroinvertebrate communities? Oecologia 171: 971–980.

    Article  PubMed  Google Scholar 

  • Heino, J., 2013c. The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biological Reviews 88: 166–178.

    Article  PubMed  Google Scholar 

  • Heino, J., D. Schmera & T. Erős, 2013. A macroecological perspective of trait patterns in stream communities. Freshwater Biology 58: 1539–1555.

    Article  Google Scholar 

  • Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss of ignition as a method for estimating organic and carbon content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.

    Article  Google Scholar 

  • Henriques-Oliveira, A. L., J. L. Nessimian & L. F. M. Dorvillé, 2003. Feeding habits of chironomid larvae (Insecta: Diptera) from a stream in the Floresta da Tijuca, Rio de Janeiro, Brazil. Brazilian Journal of Biology 63: 269–281.

    Article  CAS  Google Scholar 

  • Janecek, B. F. R., 1998. Diptera: Chironomidae (Zuckmücken). Bestimmung von 4. Larvenstadien mitteleuropäischer Gattungen und österreichischer Arten. In Moog, O. (ed.), Fauna Aquatica Austriaca V. Universität für Bodenkultur, Wien: 1–117.

    Google Scholar 

  • Juggins, S., 2007. C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon Tyne, UK. http://www.staff.ncl.ac.uk/staff/stephen.juggins/software/C2Home.htm.

  • Juggins, S. & H. J. B. Birks, 2012. Quantitative environmental reconstructions from biological data. In Birks, H. J. B., A. F. Lotter, S. Juggins & J. P. Smol (eds), Tracking Environmental Changes Using Lake Sediment. Developments in Paleoenvironmental Research 5. Springer, Dordrecht: 431–494.

    Chapter  Google Scholar 

  • King, R. S. & C. J. Richardson, 2002. Evaluating subsampling approaches and macroinvertebrate taxonomic resolution for wetland bioassessment. Journal of the North American Benthological Society 21: 150–171.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 2012. Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzales, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Lepš, J. & P. Šmilauer, 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, New York.

    Google Scholar 

  • Magee, P. A., 1993. 13.3.14. Detrital accumulation and processing in wetlands. Waterfowl Management Handbook, Paper 20.

  • Merrit, R. W., K. W. Cummins, M. B. Berg, J. A. Novak, M. J. Higgins, K. J. Wessel & J. L. Lessard, 2002. Development and application of a macroinvertebrate functional-group approach in the bioassessment of remnant river oxbows in southwest Florida. Journal of the North American Benthological Society 21: 290–310.

    Article  Google Scholar 

  • Milošević, D., V. Simić, M. Stojković, D. Čerba, D. Mančev, A. Petrović & M. Paunović, 2013. Spatio-temporal pattern of the Chironomidae community: toward the use of non-biting midges in bioassessment programs. Aquatic Ecology 47: 37–55.

    Article  Google Scholar 

  • Moog, O. (ed.), 2002. Fauna Aquatica Austriaca. Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Vienna.

    Google Scholar 

  • Mousavi, S. K., 2002. Boreal chironomid communities and their relations to environmental factors – the impact of lake depth, size and acidity. Boreal Environment Research 7: 63–75.

    CAS  Google Scholar 

  • Mykrä, H., J. Heino & T. Muotka, 2007. Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Global Ecology and Biogeography 16: 149–159.

    Article  Google Scholar 

  • Nicacio, G. & L. Juen, 2015. Chironomids as indicators in freshwater ecosystems: an assessment of the literature. Insect Conservation and Diversity 8: 393–403.

    Article  Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Article  Google Scholar 

  • Pomogyi, P., 1993. Nutrient retention by the Kis-Balaton water protection system. Hydrobiologia 251: 309–320.

    Article  CAS  Google Scholar 

  • Porinchu, D. F. & G. M. MacDonald, 2003. The use and application of freshwater midges (Chironomidae: Insecta: Diptera) in geographical research. Progress in Physical Geography 27: 378–422.

    Article  Google Scholar 

  • Puntí, T., M. Rieradevall & N. Prat, 2009. Environmental factors, spatial variation and specific requirements of Chironomidae in Mediterranean reference streams. Journal of the North American Benthological Society 28: 247–265.

    Article  Google Scholar 

  • Rae, J. G., 2004. The colonization response of lotic chironomid larvae to substrate size and heterogeneity. Hydrobiologia 524: 115–124.

    Article  Google Scholar 

  • Real, M., M. Rieradevall & N. Prat, 2000. Chironomus species (Diptera: Chironomidae) in the profundal benthos of Spanish reservoirs and lakes: factors affecting distribution patterns. Freshwater Biology 43: 1–18.

    Article  Google Scholar 

  • Root, R. B., 1967. The niche exploitation pattern of the blue-grey gnatcatcher. Ecological Monographs 37: 317–350.

    Article  Google Scholar 

  • Roque, F. O., T. Siqueira, L. M. Bini, M. C. Ribeiro, L. R. Tambosi, G. Ciocheti & S. Trivinho-Strixino, 2010. Untangling associations between chironomid taxa in Neotropical streams using local and landscape filters. Freshwater Biology 55: 847–865.

    Article  Google Scholar 

  • Sæther, O. A., 1979. Chironomid communities as water quality indicators. Holarctic Ecology 2: 65–74.

    Google Scholar 

  • Sæther, O. A., P. Ashe & D. A. Murray, 2000. A.6. Family Chironomidae. In: Papp, L. & B. Darvas (eds), Contribution to a Manual of Palearctic Diptera. Appendix. Science Herald, Budapest: 113–334.

  • Sanseverino, A. M. & J. L. Nessimian, 2008. The food of larval Chironomidae (Insecta, Diptera) in submerged litter in a forest stream of the Atlantic Forest (Rio de Janeiro, Brazil). Acta Limnologica Brasiliensia 20: 15–20.

    Google Scholar 

  • Specziár, A. & E. T. Rezsu, 2009. Feeding guilds and food resource partitioning in a lake fish assemblage: an ontogenetic approach. Journal of Fish Biology 75: 247–267.

    Article  PubMed  Google Scholar 

  • Specziár, A., Á. I. György & T. Erős, 2013. Within-lake distribution patterns of fish assemblages: the relative role of spatial, temporal and random environmental factors in assessing fish assemblages using gillnets in a large and shallow temperate lake. Journal of Fish Biology 82: 840–855.

    Article  PubMed  Google Scholar 

  • Spieles, D. J. & W. J. Mitsch, 2000. Macroinvertebrate community structure in high- and low-nutrient constructed wetlands. Wetlands 20: 716–729.

    Article  Google Scholar 

  • Šporka, F., H. E. Vlek, E. Bulánková & I. Krno, 2006. Influence of seasonal variation on bioassessment of streams using macroinvertebrates. Hydrobiologia 566: 543–555.

    Article  Google Scholar 

  • Stewart, T. W., T. L. Shumaker & T. A. Radzio, 2003. Linear and nonlinear effects of habitat structure on composition and abundance in the macroinvertebrate community of a large river. The American Midland Naturalist 149: 293–305.

    Article  Google Scholar 

  • Suurkuukka, H., K. K. Meissner & T. Muotka, 2012. Species turnover in lake littorals: spatial and temporal variation of benthic macroinvertebrate diversity and community composition. Diversity and Distributions 18: 931–941.

    Article  Google Scholar 

  • Tarkowska-Kukuryk, M., 2014. Spatial distribution of epiphytic chironomid larvae in a shallow macrophyte-dominated lake: effect of macrophyte species and food resources. Limnology 15: 141–153.

    Article  Google Scholar 

  • Tarkowska-Kukuryk, M. & R. Kornijów, 2008. Influence of spatial distribution of submerged macrophytes on Chironomidae assemblages in shallow lakes. Polish Journal of Ecology 56: 569–579.

    Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, New York.

  • Tóth, M., A. Móra, B. Kiss, Gy Dévai & A. Specziár, 2012. Are macrophyte-dwelling Chironomidae (Diptera) largely opportunistic in selecting plant species? European Journal of Entomology 109: 247–260.

    Article  Google Scholar 

  • Tóth, M., D. Árva, S. A. Nagy & A. Specziár, 2013. Species diversity and abundance of plant-dwelling chironomids across hierarchical habitat and seasonal scales in the oxbow lakes of River Tisza, Hungary. Fundamental and Applied Limnology 182: 309–321.

    Article  Google Scholar 

  • Usseglio-Polatera, P., M. Bournaud, P. Richoux & H. Tachet, 2000. Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshwater Biology 43: 175–205.

    Article  Google Scholar 

  • Vallenduuk, H. J., 1999. Key to the Larvae of Glyptotendipes Kieffer (Diptera, Chironomidae) in Western Europe. Bureau for Hydrobiological Research, Lelystad.

    Google Scholar 

  • Vallenduuk, H. J. & H. K. M. Moller Pillot, 2002. Key to the larvae of Chironomus in Western Europe. Bureau for Hydrobiological Research, Lelystad.

    Google Scholar 

  • Vallenduuk, H. J. & E. Morozova, 2005. Cryptochironomus. An identification key to the larvae and pupal exuviae in Europe. Lauterbornia 55: 1–22.

    Google Scholar 

  • Vanormelingen, P., K. Cottenie, E. Michels, K. Muylaert, W. Vyverman & L. De Meester, 2008. The relative importance of dispersal and local processes in structuring phytoplankton communities in a set of highly interconnected ponds. Freshwater Biology 53: 2170–2183.

    Google Scholar 

  • Werner, E. E. & J. F. Gilliam, 1984. The ontogenetic niche and species interactions in sizestructured populations. Annual Reviews of Ecology and Systematics 15: 393–425.

    Article  Google Scholar 

  • Whiles, M. R. & B. S. Goldowitz, 2005. Macroinvertebrate communities in central Platte River wetlands: patterns across a hydrologic gradient. Wetlands 25: 462–472.

    Article  Google Scholar 

  • Wiederholm, T., 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomologica Scandinavica Supplement 19: 1–457.

    Google Scholar 

  • Wolfram, G., 1996. Distribution and production of chironomids (Diptera, Chironomidae) in a shallow, alkaline lake (Neusiedler See, Austria). Hydrobiologia 318: 103–115.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Adrienn Tóth for her assistance in the field and Steve Juggins for providing us a free C2 license. This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 ‘National Excellence Program’ and GINOP-2.3.2-15-2016-00019. The work of Mónika Tóth was also supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diána Árva.

Additional information

Handling editor: Judit Padisák

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Árva, D., Tóth, M., Mozsár, A. et al. The roles of environment, site position, and seasonality in taxonomic and functional organization of chironomid assemblages in a heterogeneous wetland, Kis-Balaton (Hungary). Hydrobiologia 787, 353–373 (2017). https://doi.org/10.1007/s10750-016-2980-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2980-7

Keywords

Navigation