, Volume 787, Issue 1, pp 291–305 | Cite as

Hope springs eternal in the starfish gonad: preserved potential for sexual reproduction in a single-clone population of a fissiparous starfish

  • Alex Garcia-Cisneros
  • Rocío Pérez-Portela
  • Owen S. Wangensteen
  • Marta Campos-Canet
  • Creu Palacín
Primary Research Paper


Among echinoderms, asexual reproduction by fission occurs in few species. This strategy is considered a temporary response to stressful conditions and usually alternates with sexual reproduction events; thus, monoclonal populations are extremely rare. The occurrence of a single-clone population of the starfish Coscinasterias tenuispina at Llançà (NW Mediterranean) allowed us to study intra-clonal variation of the reproductive cycle during a two-year study. The few developed gonads (all male) were found in winter months, coinciding with the minimum photoperiod (ρ = −0.82; P < 0.001) and lowest temperatures (ρ = −0.75; P < 0.001), only in best-fed individuals, indicating that food availability influences individual ability for gonad development. Fissiparity happened throughout all the sampled period, but its rate increased with warm temperatures (ρ = 0.68; P < 0.0001). In contrast to what has been reported in other species, no correlation between fission rates and population density was found. The population was maintained over time by asexual reproduction and remained monoclonal. Although sexual reproduction has probably not occurred in this all-male population for a long time, the ability to yearly produce mature gonads is retained by some individuals, indicating that potential to reproduce sexually may be preserved, even in the case of strictly asexual populations.


Sea star Echinoderm Reproductive cycle Asexual reproduction Fission Photoperiod 

Supplementary material

10750_2016_2971_MOESM1_ESM.tiff (6.2 mb)
Supplementary figure S1. Histograms of size structure of the population per month. Supplementary material 1 (TIFF 6378 kb)
10750_2016_2971_MOESM2_ESM.tiff (6.2 mb)
Supplementary figure S2. Histogram of sizes at Llançà and Canary Islands. Supplementary material 2 (TIFF 6369 kb)
10750_2016_2971_MOESM3_ESM.tiff (6.2 mb)
Supplementary figure S3. Pie charts showing the regeneration state for individuals of both areas. Supplementary material 3 (TIFF 6369 kb)
10750_2016_2971_MOESM4_ESM.tiff (24.9 mb)
Supplementary figure S4. Number of madreporites in individuals of different regeneration state. Supplementary material 4 (TIFF 25468 kb)
10750_2016_2971_MOESM5_ESM.tiff (6.2 mb)
Supplementary figure S5. Histology sections from C. tenuispina male gonads with the three mature stages found. A) Growing, B) premature, and C) mature. S, spermatozoa and NT, nutritive tissue. Supplementary material 5 (TIFF 6378 kb)


  1. Abramoff, M. D., P. J. Magelhaes & S. J. Ram, 2004. Image processing with ImageJ. Biophotonics International 11: 36–42.Google Scholar
  2. Achituv, Y., 1969. Studies on the reproduction and distribution of Asterina burtoni Gray and A. wega Perrier (Asteroidea) in the Red Sea and the eastern Mediterranean. Israel Journal of Zoology 18: 329–342.Google Scholar
  3. Achituv, Y. & E. Sher, 1991. Sexual reproduction and fission in the sea star Asterina burtoni from the mediterranean coast of Israel. Bulletin of Marine Science 48: 670–678.Google Scholar
  4. Alberto, F., 2009. MsatAllele_1.0: an R package to visualize the binning of microsatellite alleles. The Journal of Heredity 100: 394–397.CrossRefPubMedGoogle Scholar
  5. Alves, L. S., A. Pereira & C. Ventura, 2002. Sexual and asexual reproduction of Coscinasterias tenuispina (Echinodermata: Asteroidea) from Rio de Janeiro, Brazil. Marine Biology 140: 95–101.CrossRefGoogle Scholar
  6. Barker, M. F., 2013. Coscinasterias. In Lawrence, J. M. (ed.), Starfish: Biology and Ecology of Asteroidea. Johns Hopkins University Press, Baltimore: 191–199.Google Scholar
  7. Barker, M. & R. E. Scheibling, 2007. Rates of fission, somatic growth and gonadal development of a fissiparous sea star, Allostichaster insignis, in New Zealand. Marine Biology 153: 815–824.CrossRefGoogle Scholar
  8. Becks, L., & A. F. Agrawal, 2012. The evolution of sex is favoured during adaptation to new environments. PLoS Biology 10: e1001317.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Benjamini, Y. & Y. Hochberg, 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57: 289–300.Google Scholar
  10. Chao, S. M. & C. C. Tsai, 1995. Reproduction and population dynamics of the fissiparous brittle star Ophiactis savignyi (Echinodermata: Ophiuroidea). Marine Biology 124: 77–83.CrossRefGoogle Scholar
  11. Conand, C., S. Uthicke & T. Hoareau, 2002. Sexual and asexual reproduction of the holothurian Stichopus chloronotus (Echinodermata): a comparison between La Réunion (Indian Ocean) and east Australia (Pacific Ocean). Invertebrate Reproduction & Development Taylor & Francis Group 41: 235–242.CrossRefGoogle Scholar
  12. Crozier, W. J., 1921. Notes on some problems of adaptation. Biological Bulletin 41: 102–105.CrossRefGoogle Scholar
  13. Crump, R. G. & M. F. Barker, 1985. Sexual and asexual reproduction in geographically separated populations of the fissiparous asteroid Coscinasterias Calamaria (Gray). Journal of Experimental Marine Biology and Ecology 88: 109–127.CrossRefGoogle Scholar
  14. Delavault, R., 1961. La sexualite chez Echinaster sepositus Gray du Golfe de Naples. Pubblicazioni della Stazione Zoologica di Napoli 32: 41–55.Google Scholar
  15. Donet, L. L., 2007. Preferencia de sustrato y densidad de Coscinasterias tenuispina (Echinodermata: Asteroidea) en la zona mesolitoral de la Playa de Las Canteras. Anales Universitarios de Etología 1: 58–62.Google Scholar
  16. Emson, R. H. & I. C. Wilkie, 1980. Fission and Autotomy in Echinoderms Oceanography and Marine Biology. Aberdeen University Press, Aberdeen: 155–250.Google Scholar
  17. Garcia-Cisneros, A., R. Pérez-Portela, B. C. Almroth, S. Degerman, C. Palacín & H. N. Sköld, 2015. Long telomeres are associated with clonality in wild populations of the fissiparous starfish Coscinasterias tenuispina. Heredity 115: 437–443.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Garcia-Cisneros, A., C. Valero-Jiménez, C. Palacín & R. Pérez-Portela, 2013. Characterization of thirty two microsatellite loci for three Atlanto-Mediterranean echinoderm species. Conservation Genetics Resources 5: 749–753.CrossRefGoogle Scholar
  19. Georgiades, E. T., A. Temara & D. A. Holdway, 2006. The reproductive cycle of the asteroid Coscinasterias muricata in Port Phillip Bay, Victoria, Australia. Journal of Experimental Marine Biology and Ecology 332: 188–197.CrossRefGoogle Scholar
  20. Giese, A., 1966. On the biochemical constitution of some echinoderms. In Boolootian, R. A. (ed.), Physiology of Echinodermata. Interscience Publishers, New York: 757–796.Google Scholar
  21. Halkett, F., R. Harrington, M. Hullé, P. Kindlmann, F. Menu, C. Rispe & M. Plantegenest, 2004. Dynamics of production of sexual forms in aphids: theoretical and experimental evidence for adaptive “coin-flipping” plasticity. The American Naturalist 163: E112–E125.CrossRefPubMedGoogle Scholar
  22. Haramoto, S., M. Komatsu & Y. Yamazaki, 2007. Patterns of asexual reproduction in the fissiparous seastar Coscinasterias acutispina (Asteroidea: Echinodermata) in Japan. Zoological Science 24: 1075–1081.CrossRefPubMedGoogle Scholar
  23. Hebert, P. D. N. & T. L. Finston, 2001. Macrogeographic patterns of breeding system diversity in the Daphnia pulex group from the United States and Mexico. Heredity 87: 153–161.CrossRefPubMedGoogle Scholar
  24. Hebert, P. D. N., S. S. Schwartz, R. D. Ward & T. L. Finston, 1993. Macrogeographic patterns of breeding system diversity in the Daphnia pulex Group. 1. Breeding systems of Canadian populations. Heredity 70: 148–161.CrossRefGoogle Scholar
  25. Honnay, O., & B. Bossuyt, 2005. Prolonged clonal growth: Escape route or route to extinction? Oikos 108: 427–432.CrossRefGoogle Scholar
  26. Jackson, J. B. C. & A. G. Coates, 1986. Life cycles and evolution of clonal (modular) animals. Philosophical Transactions of the Royal Society of London B: Biological Sciences 313(1159): 7–22.CrossRefGoogle Scholar
  27. Karako, S., Y. Achituv, R. Perl-Treves & D. Katcoff, 2002. Asterina burtoni (Asteroidea; Echinodermata) in the Mediterranean and the Red Sea: does asexual reproduction facilitate colonization? Marine Ecology Progress Series 234: 139–145.CrossRefGoogle Scholar
  28. Kettle, B. T., & J. S. Lucas, 1987. Biometric relationship between organ indices, fecundity, oxygen consumption and body size in Acanthaster planci (L.) (Echinodermata; Asteroidea). Bulletin of Marine Science 41: 541–551.Google Scholar
  29. Lawrence, J. M. & J. Herrera, 2000. Stress and deviant reproduction in echinoderms. Zoological Studies 39: 151–171.Google Scholar
  30. McGovern, T. M., 2002. Sex-Ratio bias and clonal reproduction in the brittle star Ophiactis savignyi. Evolution 56: 511–517.CrossRefPubMedGoogle Scholar
  31. McGovern, T. M., 2003. Plastic reproductive strategies in a clonal marine invertebrate. Proceedings of The Royal Society B: Biological Sciences 270: 2517–2522.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Meirmans, P. G. & P. H. Van Tienderen, 2004. Genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4: 792–794.CrossRefGoogle Scholar
  33. Mercier, A. & J. F. Hamel, 2013. Reproduction in Asteroidea. In Lawrence, J. (ed.), Starfish: Biology and Ecology of Asteroidea. The Johns Hopkins University Press, Baltimore: 37–50.Google Scholar
  34. Mladenov, P. V., 1996. Environmental factors influencing asexual reproductive processes in echinoderms. Oceanologica Acta 19(3–4): 227–235.Google Scholar
  35. Mladenov, P. V. & R. Emson, 1988. Density, size structure and reproductive characteristics of fissiparous brittle stars in algae and sponges: evidence for interpopulational variation in levels of sexual and asexual reproduction. Marine Ecology Progress Series 42: 181–194.CrossRefGoogle Scholar
  36. Mladenov, P. V., S. F. Carson & C. W. Walker, 1986. Reproductive ecology of an obligately fissiparous population of the sea star Stephanasterias albula Stimpson. Journal of Experimental Marine Biology and Ecology 96(2): 155–175.CrossRefGoogle Scholar
  37. Pastor-de-Ward, C. T., T. Rubilar, M. E. Díaz-de-Vivar, X. Gonzalez-Pisani, E. Zarate, M. Kroeck & E. Morsan, 2006. Reproductive biology of Cosmasterias lurida (Echinodermata: Asteroidea) on anthropogenically influenced substratum from Golfo Nuevo, Northern Patagonia (Argentina). Marine Biology 151: 205–217.CrossRefGoogle Scholar
  38. Pearse, J. S. & C. W. Walker, 1986. Photoperiodic regulation of gametogenesis in a North Atlantic sea star, Asterias vulgaris. International Journal of Invertebrate Reproduction and Development Taylor & Francis Group 9: 71–77.CrossRefGoogle Scholar
  39. R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  40. Rubilar, T., C. T. Pastor-de-Ward & M. E. Díaz-de-Vivar, 2005. Sexual and asexual reproduction of Allostichaster capensis (Echinodermata: Asteroidea) in Golfo Nuevo. Marine Biology 146: 1083–1090.CrossRefGoogle Scholar
  41. Rubilar, T., G. Villares, L. Epherra, M. E. Díaz-de-Vivar & C. T. Pastor-de-Ward, 2011. Fission, regeneration, gonad production and lipids storage in the pyloric caeca of the sea star Allostichaster capensis. Journal of Experimental Marine Biology and Ecology 409: 247–252.CrossRefGoogle Scholar
  42. Seto, Y., Y. Moriyama, D. Fujita & M. Komatsu, 2000. Sexual and asexual reproduction in two populations of the fissiparous asteroid Coscinasterias acutispina in Toyama Bay, Japan. Benthos Research 55: 85–93.CrossRefGoogle Scholar
  43. Seto, Y., M. Komatsu, K. Wakabayashi & D. Fujita, 2013. Asexual reproduction of Coscinasterias acutispina (Stimpson, 1862) in tank culture. Cahiers de Biologie Marine 54: 641–647.Google Scholar
  44. Simon, J. C., C. Rispe & P. Sunnucks, 2002. Ecology and evolution of sex in aphids. Trends in Ecology & Evolution 17: 34–39.CrossRefGoogle Scholar
  45. Sköld, M., M. Barker & P. Mladenov, 2002. Spatial variability in sexual and asexual reproduction of the fissiparous seastar Coscinasterias muricata: the role of food and fluctuating temperature. Marine Ecology Progress Series 233: 143–155.CrossRefGoogle Scholar
  46. Sköld, M., S. Wing & P. Mladenov, 2003. Genetic subdivision of a sea star with high dispersal capability in relation to physical barriers in a fjordic seascape. Marine Ecology Progress Series 250: 163–174.CrossRefGoogle Scholar
  47. Sterling, K. & S. Shuster, 2011. Rates of fission in Aquilonastra corallicola Marsh (Echinodermata: Asteroidea) as affected by population density. Invertebrate Reproduction & Development 55: 1–5.CrossRefGoogle Scholar
  48. Tartarin, A., 1953. Observations sur les mutilations, la regeneration, les neoformations et l’anatomie de Coscinasterias tenuispina. Rec. Trav. St. Mar. Endoume-Marseille, Fast. Hors Ser. Suppl., Vol. 10: l–107.Google Scholar
  49. Uthicke, S., J. A. H. Benzie & E. Ballment, 1999. Population genetics of the fissiparous holothurian Stichopus chloronotus (Aspidochirotida) on the Great Barrier Reef, Australia. Coral Reefs 18: 123–132.CrossRefGoogle Scholar
  50. Uthicke, S., B. Schaffelke & M. Byrne, 2009. A boom–bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecological Monographs 79: 3–24.CrossRefGoogle Scholar
  51. Walker, C. W., 1980. Spermatogenic columns, somatic cells, and the microenvironment of germinal cells in the testes of asteroids. Journal of Morphology 166: 81–107.CrossRefGoogle Scholar
  52. Wangensteen, O. S., S. Dupont, I. Casties, X. Turon & C. Palacín, 2013a. Some like it hot: temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. Journal of Experimental Marine Biology and Ecology 449: 304–311.CrossRefGoogle Scholar
  53. Wangensteen, O. S., X. Turon, M. Casso & C. Palacín, 2013b. The reproductive cycle of the sea urchin Arbacia lixula in northwest Mediterranean: potential influence of temperature and photoperiod. Marine Biology 160: 3157–3168.CrossRefGoogle Scholar
  54. Witman, J. D. & K. R. Grange, 1998. Links between rain, salinity, and predation in a rocky subtidal community. Ecology 79: 2429–2447.CrossRefGoogle Scholar
  55. Xu, R. A. & M. F. Barker, 1990. Photoperiodic regulation of oogenesis in the starfish Sclerasterias mollis (Hutton 1872) (Echinodermata: Asteroidea). Journal of Experimental Marine Biology and Ecology 141: 159–168.CrossRefGoogle Scholar
  56. Yund, P. O., 2000. How severe is sperm limitation in natural populations of marine free-spawners? Trends in Ecology & Evolution 15: 10–13.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alex Garcia-Cisneros
    • 1
  • Rocío Pérez-Portela
    • 2
    • 3
  • Owen S. Wangensteen
    • 1
    • 4
  • Marta Campos-Canet
    • 1
  • Creu Palacín
    • 1
  1. 1.Department of Animal BiologyUniversity of Barcelona and Biodiversity Research Institute (IRBIO)BarcelonaSpain
  2. 2.Center for Advanced Studies of Blanes (CEAB-CSIC)BlanesSpain
  3. 3.Rosenstiel School of Marine & Atmospheric ScienceUniversity of MiamiMiamiUSA
  4. 4.School of Environment and Life Sciences, Ecosystems and Environment Research CentreUniversity of SalfordSalfordUK

Personalised recommendations