Skip to main content

Sensitive response of sediment-grown Myriophyllum spicatum L. to arsenic pollution under different CO2 availability

Abstract

Aquatic plants may face resource constraints or anthropogenic pollution, and effects might be heightened under multiple stress conditions. We investigated if arsenate effects on Myriophyllum spicatum L. would be stronger under CO2 limitation and low phosphorus availability. In a factorial design, we exposed sediment-grown plants to either CO2 (high carbon or HC) or bicarbonate (low carbon or LC) and four levels of arsenate. We observed strong effects of arsenate exposure on growth, biomass allocation (leaf, stem and root mass fractions), pigments and phenolic compounds. CO2 availability strongly affected the content in phenolic compounds and a few other response variables, yet overall effects were less pronounced than expected. Strong interactive effects of CO2 availability and arsenic concentration were only observed for carotenoids, the carotenoid/chlorophyll ratio and phenolic compounds in leaves. Only the carbon content declined with increasing arsenic concentration, otherwise leaf elemental content and stoichiometry were not affected by arsenic or CO2 availability, suggesting that plants strived to maintain leaf functions. The observed effects on biomass allocation and plant quality, specifically dry matter content and phenolic compound content of M. spicatum not only show direct changes in plant performance but suggest also indirect effects on ecological interactions such as competition or herbivory.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • AFNOR, 1990. Eaux-Méthodes d’Essais. Association Française de Normalisation (ed.). ISBN 2-12-179041-1.

  • Cedergreen, N., J. C. Streibig & N. H. Spliid, 2004. Sensitivity of aquatic plants to the herbicide metsulfuron-methyl. Ecotoxicology and Environmental Safety 57: 153–161.

    CAS  Article  PubMed  Google Scholar 

  • Demars, B. O. L. & A. C. Edwards, 2007. Tissue nutrient concentrations in freshwater aquatic macrophytes: high inter-taxon differences and low phenotypic response to nutrient supply. Freshwater Biology 52: 2073–2086.

    CAS  Article  Google Scholar 

  • Dixon, R. A. & N. L. Pavia, 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085–1097.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Dushenko, W. T., D. A. Bright & K. J. Reimer, 1995. Arsenic bioaccumulation and toxicity in aquatic macrophytes exposed to gold-mine effluent: relationships with environmental partitioning, metal uptake and nutrients. Aquatic Botany 50: 141–158.

    CAS  Article  Google Scholar 

  • Elger, A. & N. J. Willby, 2003. Leaf dry matter content as an integrative expression of plant palatability: the case of freshwater macrophytes. Functional Ecology 17: 58–65.

    Article  Google Scholar 

  • Eusebio Malheiro, A. C., P. Jahns & A. Hussner, 2013. CO2 availability rather than light and temperature determines growth and phenotypical responses in submerged Myriophyllum aquaticum. Aquatic Botany 110: 31–37.

    Article  Google Scholar 

  • Finnegan, P. M. & W. Chen, 2012. Arsenic toxicity: the effects on plant metabolism. Frontiers in Physiology 3: 182.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Fornoff, F. & E. M. Gross, 2014. Induced defense mechanisms in an aquatic angiosperm to insect herbivory. Oecologia 175: 173–185.

    Article  PubMed  Google Scholar 

  • Geng, C. N., Y. G. Zhu, W. J. Liu & S. E. Smith, 2005. Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations. Aquatic Botany 83: 321–331.

    CAS  Article  Google Scholar 

  • Grace, J. B. & R. G. Wetzel, 1978. The production biology of Eurasian watermilfoil (Myriophyllum spicatum L.): a review. Joural of Aquatic Plant Management 16: 1–11.

    Google Scholar 

  • Gross, E. M., 2003. Differential response of tellimagrandin II and total bioactive hydrolysable tannins in an aquatic angiosperm to changes in light and nitrogen. Oikos 103: 497–504.

    CAS  Article  Google Scholar 

  • Gross, E. M. & E. S. Bakker, 2012. The role of plant secondary metabolites in freshwater macrophyte-herbivore interactions: limited or unexplored chemical defences? In Iason, G. R., M. Dicke & S. E. Hartley (eds.), The Integrative Role of Plant Secondary Metabolites in Ecological Systems. British Ecological Society/Cambridge University Press, Sussex: 154–169.

    Chapter  Google Scholar 

  • Guo, H. M., Z. N. Zhong, M. Lei, X. L. Xue, X. M. Wan, J. Y. Zhao & T. B. Chen, 2012. Arsenic uptake from arsenic-contaminated water using hyperaccumulator Pteris vittata L.: effect of chloride, bicarbonate, and arsenic species. Water Air and Soil Pollution 223: 4209–4220.

    CAS  Article  Google Scholar 

  • Güsewell, S. & M. Koerselman, 2002. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology Evolution and Systematics 5: 37–61.

    Article  Google Scholar 

  • Harguinteguy, C. A., M. L. Pignata & A. Fernández-Cirelli, 2015. Nickel, lead and zinc accumulation and performance in relation to their use in phytoremediation of macrophytes Myriophyllum aquaticum and Egeria densa. Ecological Engineering 82: 512–516.

    Article  Google Scholar 

  • Hartley, S. E., C. G. Jones, G. C. Couper & T. H. Jones, 2000. Biosynthesis of plant phenolic compounds in elevated atmospheric CO2. Global Change Biology 6: 497–506.

    Article  Google Scholar 

  • Hussner, A. & P. Jahns, 2015. European native Myriophyllum spicatum showed a higher use capacity than alien invasive Myriophyllum heterophyllum. Hydrobiologia 746: 171–182.

    CAS  Article  Google Scholar 

  • Hussner, A., D. Hofstra, P. Jahns & J. Clayton, 2015. Response capacity to CO2 depletion rather than temperature and light effects explain the growth success of three alien Hydrocharitaceae compared with native Myriophyllum triphyllum in New Zealand. Aquatic Botany 120: 205–211.

    Article  Google Scholar 

  • Hussner, A., T. Mettler-Altmann, A. P. M. Weber & K. Sand-Jensen, 2016. Acclimation of photosynthesis to supersaturated CO2 in aquatic plant bicarbonate users. Freshwater Biology. doi:10.1111/fwb.12812.

    Google Scholar 

  • Krayem, M., V. Deluchat, M. Rabiet, K. Cleries, J. F. Lenain, Z. Saad, V. Kazpard & P. Labrousse, 2016. Effect of arsenate As(V) on the biomarkers of Myriophyllum alterniflorum in oligotrophic and eutrophic conditions. Chemosphere 147: 131–137.

    CAS  Article  PubMed  Google Scholar 

  • Lavid, N., A. Schwartz, O. Yarden & E. Tel-Or, 2001. The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212: 323–331.

    CAS  Article  PubMed  Google Scholar 

  • Lê, S., J. Josse & F. Husson, 2008. FactoMineR: an R Package for Multivariate Analysis. Journal of Statistical Software. 25: 1–18.

    Article  Google Scholar 

  • Leao, G. A., J. A. de Oliveira, R. T. A. Felipe, F. S. Farnese & G. S. Gusman, 2014. Anthocyanins, thiols, and antioxidant scavenging enzymes are involved in Lemna gibba tolerance to arsenic. Journal of Plant Interactions 9: 143–151.

    CAS  Article  Google Scholar 

  • Leu, E., A. Krieger-Liszkay, C. Goussias & E. M. Gross, 2002. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum L. inhibit photosystem II. Plant Physiology 130: 2011–2018.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Li, W., T. Cao, L. Y. Ni, G. R. Zhu, X. L. Zhang, H. Fu, X. Song & P. Xie, 2015. Size-dependent C, N and P stoichiometry of three submersed macrophytes along water depth gradients. Environmental Earth Sciences 74: 3733–3738.

    CAS  Article  Google Scholar 

  • Lichtenthaler, H. K. & C. Buschmann, 2001. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy Current Protocols in Food Analytical Chemistry. Wiley, New York.

    Google Scholar 

  • Meybeck, M., 2004. The global change of continental aquatic systems: dominant impacts of human activities. Water Science and Technology 49: 73–83.

    CAS  PubMed  Google Scholar 

  • Mishra, S., H. J. Stark & H. Kupper, 2014. A different sequence of events than previously reported leads to arsenic-induced damage in Ceratophyllum demersum L. Metallomics 6: 444–454.

    CAS  Article  PubMed  Google Scholar 

  • Mkandawire, M. & E. G. Dudel, 2012. Homeostatic regulation of elemental stoichiometry by Lemna gibba L. G3 when nutrient interact with toxic metals. Ecotoxicology 21: 456–464.

    CAS  Article  PubMed  Google Scholar 

  • Murray, J. R. & W. P. Hackett, 1991. Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiology 97: 343–351.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Nuttens, A., S. Chatellier, S. Devin, C. Guignard, A. Lenouvel & E. M. Gross, 2016. Does nitrate co-pollution affect biological responses of an aquatic plant to two common herbicides? Aquatic Toxicology 177: 355–364.

    CAS  Article  PubMed  Google Scholar 

  • OECD, 2014. TG 239: water-sediment Myriophyllum spicatum toxicity test. Test Guideline No. 239: 23.

  • Pérez-Harguindeguy, N., S. Díaz, E. Garnier, S. Lavorel, H. Poorter, P. Jaureguiberry, M. S. Bret-Harte, W. K. Cornwell, J. M. Craine, D. E. Gurvich, C. Urcelay, E. J. Veneklaas, P. B. Reich, L. Poorter, I. J. Wright, P. Ray, L. Enrico, J. G. Pausas, A. C. de Vos, N. Buchmann, G. Funes, F. Quétier, J. G. Hodgson, K. Thompson, H. D. Morgan, H. ter Steege, M. G. A. van der Heijden, L. Sack, B. Blonder, P. Poschlod, M. V. Vaieretti, G. Conti, A. C. Staver, S. Aquino & J. H. C. Cornelissen, 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167–234.

    Article  Google Scholar 

  • R Studio Team, 2015. RStudio: Integrated Development for R. RStudio Inc, Boston.

    Google Scholar 

  • Rahman, M. A., H. Hasegawa & R. P. Lim, 2012. Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environmental Research 116: 118–135.

    Article  PubMed  Google Scholar 

  • Reznik, H. & R. Neuhausel, 1959. Farblose Anthocyane bei submersen Wasserpflanzen. Zeitschrift für Botanik 47: 471–489.

    CAS  Google Scholar 

  • Robinson, B., N. Kim, M. Marchetti, C. Moni, L. Schroeter, C. van den Dijssel, G. Milne & B. Clothier, 2006. Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environmental and Experimental Botany 58: 206–215.

    CAS  Article  Google Scholar 

  • Sánchez-Viveros, G., R. Ferrera-Cerrato & A. Alarcón, 2011. Short-term effects of arsenate-induced toxicity on growth, chlorophyll and carotenoid contents, and total content of phenolic compounds of Azolla filiculoides. Water Air Soil Pollution 217: 455–462.

    Article  Google Scholar 

  • Segner, H., M. Schmitt-Jansen & S. Sabater, 2014. Assessing the impact of multiple stressors on aquatic biota: the receptor’s side matters. Environmental Science & Technology 48: 7690–7696.

    CAS  Article  Google Scholar 

  • Smart, R. M. & J. W. Barko, 1985. Laboratory culture of submersed freshwater macrophytes on natural sediments. Aquatic Botany 21: 251–263.

    Article  Google Scholar 

  • Smedley, P. L. & D. G. Kinniburgh, 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry 17: 517–568.

    CAS  Article  Google Scholar 

  • Smith, C. S. & J. W. Barko, 1990. Ecology of Eurasian watermilfoil. Journal of Aquatic Plant Management 28: 55–64.

    Google Scholar 

  • Taggart, M. A., R. Mateo, J. M. Charnock, F. Bahrami, A. J. Green & A. A. Meharg, 2009. Arsenic rich iron plaque on macrophyte roots – an ecotoxicological risk? Environmental Pollution 157: 946–954.

    CAS  Article  PubMed  Google Scholar 

  • Tripathi, R. D., P. Tripathi, S. Dwivedi, A. Kumar, A. Mishra, P. S. Chauhan, G. J. Norton & C. S. Nautiyal, 2014. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics 6: 1789–1800.

    CAS  Article  PubMed  Google Scholar 

  • Waśkiewicz, A., M. Beszterda & P. Goliński, 2014. Nonenzymatic antioxidants in plants. In Ahmad, P. (ed), Oxidative Damage to Plants: Antioxidant Networks and Signaling. Academic Press, Amsterdam: 201–234.

    Chapter  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the help of P. Rousselle with the C:N analyses, J.-F. Poinsaint with setting up the experimental infrastructure, S. Devin and L. Minguez for statistical advice. AH benefited from an invitation by the UFR SciFa, Univ Lorraine for a visit of 1 month. AN was funded by a PhD stipend from the MESR, Ministère de l’Enseignement Supérieur et de la Recherche, France. The experiment was possible due to funding for the project “PICAI—pollutant induced changes in allelochemical interactions” in the program ECODYN/EC2CO, INSU, CNRS to EMG and by support from the LTER–ZAM–Zone Atelier Moselle for AN, DP and EMG. We thank three anonymous reviewers and the editors of the special issue for constructive comments on prior versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth M. Gross.

Additional information

Guest editors: M. T. O’Hare, F. C. Aguiar, E. S. Bakker & K. A. Wood / Plants in Aquatic Systems – a 21st Century Perspective

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 177 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gross, E.M., Nuttens, A., Paroshin, D. et al. Sensitive response of sediment-grown Myriophyllum spicatum L. to arsenic pollution under different CO2 availability. Hydrobiologia 812, 177–191 (2018). https://doi.org/10.1007/s10750-016-2956-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2956-7

Keywords

  • Submerged macrophyte
  • Trace metal element pollution
  • OECD test guideline aquatic ecotoxicology
  • CO2-based growth and physiology