Skip to main content

Advertisement

Log in

Are aquatic assemblages from small water bodies more stochastic in dryer climates? An analysis of ostracod spring metacommunities

  • SMALL WATER BODIES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Metacommunity ecology describes community organisation considering both environmental and spatial processes. We tested the relative importance of environmental and spatial factors on spring ostracod assemblages from four European regions characterised by different climatic conditions (e.g. aridity). Pure and shared effects of environment and space were calculated using redundancy analysis and variation partitioning. Both environmental and spatial variables significantly explain assemblage variation, although with different relevance among areas. The amount of variation explained by environmental factors decreased with increasing climate aridity. The reduced size of spring habitats makes them prone to drying events, which are more frequent in dryer climates. Frequent disturbances may lead to local extinctions followed by colonisations from nearby sites, in a source–sink dynamics. Early recolonisation leads to random assemblages and reduces the match between organisms and environmental conditions. As a consequence, a low amount of community variation can be explained by environmental variables. Conversely, the settled communities from wetter climates best fit the ecological characteristics of sites, and deterministic processes, such as species sorting, dominate the assemblages. In conclusion, in the studied regions, ostracod communities from small water bodies of dryer climates seem to be mainly driven by stochastic dynamics when compared to more continental areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Australian Ecology 26: 32–46.

    Google Scholar 

  • Anderson, M. J., 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62: 245–253.

    Article  PubMed  Google Scholar 

  • Anderson, M. J. & D. C. I. Walsh, 2013. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecological Monographs 83: 557–574.

    Article  Google Scholar 

  • A.P.H.A., A.W.W.A., W.E.F., 2005. Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, and Water Environment Federation.

  • Baltanás, A. & D. L. Danielopol, 2013. Body-–size distribution and biogeographical patterns in non-marine ostracods (Crustacea: Ostracoda). Biological Journal of the Linnean Society 109: 409–423.

    Article  Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the Spatial Component of Ecological Variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Borcard, D., P. Legendre, C. Avois-jacquet & H. Tuomisto, 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826–1832.

    Article  Google Scholar 

  • Bottazzi, E., M. C. Bruno, M. Mazzini, V. Pieri & G. Rossetti, 2008. First report on Copepoda and Ostracoda (Crustacea) from northern Apenninic springs (N. Italy): a faunal and biogeographical account. Journal of Limnology 67(1): 56–63.

    Article  Google Scholar 

  • Bottazzi, E., M. C. Bruno, V. Pieri, A. Di Sabatino, L. Silveri, M. Carolli & G. Rossetti, 2011. Spatial and seasonal distribution of invertebrates in Northern Apennine rheocrene springs. Journal of Limnology 70: 77–92.

    Article  Google Scholar 

  • Boulton, A. J., S. E. Stibbe, N. B. Grimm & S. G. Fisher, 1991. Invertebrate recolonisation of small patches of defaunated hyporheic sediments in Sonoran desert stream. Freshwater Biology 26: 267–277.

    Article  Google Scholar 

  • Brochet, A. L., M. Gauthier-Clerc, M. Guillemain, H. Fritz, A. Waterkeyn, A. Baltanás & A. J. Green, 2010. Field evidence of dispersal of branchiopods, ostracods and bryozoans by teal (Anas crecca) in the Camargue (southern France). Hydrobiologia 637: 255–261.

    Article  Google Scholar 

  • Cantonati, M., E. Bertuzzi, A. Scalfi & V. Campana, 2009. The potential importance for spring conservation of residual habitats after flow capturing: A case study. Verhandlungen des Internationalen Verein Limnologie 30: 1267–1270.

    Google Scholar 

  • Cantonati, M., L. Füreder, R. Gerecke, I. Jüttner & E. J. Cox, 2012. Crenic habitats, hotspots for freshwater biodiversity conservation: toward an understanding of their ecology. Freshwater Science 31: 463–480.

    Article  Google Scholar 

  • Castillo-Escrivà, A., L. Valls, C. Rochera, A. Camacho & F. Mesquita-Joanes, 2015. Spatial and environmental analysis of an ostracod metacommunity from endorheic lakes. Aquatic Sciences. doi:10.1007/s00027-015-0462-z.

  • Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.

    Article  PubMed  Google Scholar 

  • Curry, B. B., 1999. An environmental tolerance index for ostracodes as indicators of physical and chemical factors in aquatic habitats. Palaeogeography, Palaeoclimatology, Palaeoecology 148: 51–63.

    Article  Google Scholar 

  • Danielopol, D. L., P. Marmonier, A. J. Boulton & G. Bonaduce, 1994. World subterranean ostracod biogeography: dispersal or vicariance. Hydrobiologia 287: 119–129.

    Article  Google Scholar 

  • Dray, S., P. Legendre & G. Blanchet, 2011. packfor: Forward Selection with permutation (Canoco p.46). R package version 0.0-8/r100. http://R-Forge.R-project.org/projects/sedar/.

  • Escrivà, A., J. M. Poquet & F. Mesquita-Joanes, 2015. Effects of environmental and spatial variables on lotic ostracod metacommunity structure in the Iberian Peninsula. Inland Waters 5: 283–294.

    Article  Google Scholar 

  • Forester, R. M., 1986. Determination of the dissolved anion composition of ancient lakes from fossil ostracodes. Geology 14: 796–798.

    Article  CAS  Google Scholar 

  • Gifré, J., X. D. Quintana, R. de la Barrera, M. Martinoy & E. Marquès, 2002. Ecological factors affecting ostracod distribution in lentic ecosystems in the Empordá Wetlands (NE Spain). Archiv für Hydrobiologie 154(3): 499–514.

    Article  Google Scholar 

  • Glazier, D. S., 1991. The fauna of North American temperate cold springs: patterns and hypotheses. Freshwater Biology 26: 527–542.

    Article  Google Scholar 

  • Grönroos, M., J. Heino, T. Siqueira, V. L. Landeiro, J. Kotanen & L. M. Bini, 2013. Metacommunity structuring in stream networks: Roles of dispersal mode, distance type, and regional environmental context. Ecology and Evolution 3: 4473–4487.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heino, J. & H. Mykrä, 2008. Control of stream insect assemblages: roles of spatial configuration and local environmental factors. Ecological Entomology 33: 614–622.

    Article  Google Scholar 

  • Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869.

    Article  Google Scholar 

  • Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones & A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.

    Article  Google Scholar 

  • Horsák, M., M. Hájek, D. Spitale, P. Hájková, D. Dítě & J. C. Nekola, 2012. The age of island-like habitats impacts habitat specialist species richness. Ecology 93: 1106–1114.

    Article  PubMed  Google Scholar 

  • Hubbell, S. P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princenton University Press, Princeton.

    Google Scholar 

  • Ilmonen, J., H. Mykrä, R. Virtanen, L. Paasivirta & T. Muotka, 2012. Responses of spring macroinvertebrate and bryophyte communities to habitat modification: community composition, species richness, and red-listed species. Freshwater Science 31: 657–667.

    Article  Google Scholar 

  • Jones, P. D. & I. Harris, 2008. Climatic Research Unit (CRU) time-series datasets of variations in climate with variations in other phenomena. NCAS British Atmospheric Data Centre, 2015. http://catalogue.ceda.ac.uk/uuid/3f8944800cc48e1cbc29a5ee12d8542d.

  • Külköylüoğlu, O., M. Yavuzatmaca, N. Sarı & D. Akdemir, 2016. Elevational distribution and species diversity of freshwater Ostracoda (Crustacea) in Çankırı region (Turkey). Journal of Freshwater Ecology 31: 219–230.

    Article  Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  Google Scholar 

  • Legendre, P. & L. F. Legendre, 2012. Numerical Ecology, Vol. 24. Elsevier, Oxford.

    Google Scholar 

  • Legendre, P., D. Borcard, F. G. Blanchet & S. Dray, 2012. PCNM: MEM spatial eigenfunction and principal coordinate analyses. R package version 2.1-2/r106. http://R-Forge.R-project.org/projects/sedar/.

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Lepori, F. & B. Malmqvist, 2009. Deterministic control on community assembly peaks at intermediate levels of disturbance. Oikos 118: 471–479.

    Article  Google Scholar 

  • Malmqvist, B., C. Meisch & A. N. Nilsson, 1997. Distribution patterns of freshwater Ostracoda (Crustacea) in the Canary Islands with regards to habitat use and biogeography. Hydrobiologia 347: 159–170.

    Article  Google Scholar 

  • Marchiani, C. & G. Venturelli, 2006. Studio pilota interdisciplinare per la valutazione e la gestione delle risorse idriche della Riserva Naturale Monte Prinzera. Ricerca realizzata nell’ambito del Programma Regionale di Investimenti nelle Aree Protette 2001–2003.

  • Marmonier, P. & C. des Châtelliers, 1992. Biogeography of the benthic and interstitial living ostracods (Crustacea) of the Rhône River (France). Journal of Biogeography 19: 693–704.

    Article  Google Scholar 

  • Martens, K., I. Schön, C. Meisch & D. J. Horne, 2008. Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 595: 185–193.

    Article  Google Scholar 

  • Meisch, C., 2000. Freshwater Ostracoda of Western and Central Europe. Spektrum, Heidelberg, Berlin.

    Google Scholar 

  • Mesquita-Joanes, F., A. J. Smith & F. Viehberg, 2012. The ecology of Ostracoda across levels of biological organisation from individual to ecosystem: a review of recent developments and future potential. In Horne, D. J., J. A. Holmes, J. Rodríguez-Lázaro & F. Viehberg (eds), Ostracoda as Proxies for Quaternary Climate Change, Vol. 17., Developments in Quaternary Science Series Elsevier, Amsterdam: 15–35.

    Chapter  Google Scholar 

  • Mezquita, F., G. Tapia & J. R. Roca, 1999. Ostracoda from springs on the eastern Iberian Peninsula: ecology, biogeography and palaeolimnological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 148: 65–85.

    Article  Google Scholar 

  • Mezquita, F., H. I. Griffiths, M. I. Dominguez & M. A. Lozano-Quilis, 2001. Ostracoda (Crustacea) as ecological indicators: a case study from Iberian Mediterranean brooks. Archiv für Hydrobiologie 150: 545–560.

    Article  Google Scholar 

  • Mezquita, F., J. R. Roca, J. M. Reed & G. Wansard, 2005. Quantifying species-environment relationships in non-marine Ostracoda for ecological and palaeoecological studies: Examples using Iberian data. Palaeogeography, Palaeoclimatology, Palaeoecology 225: 93–117.

    Article  Google Scholar 

  • Michelson, A. V., L. E. Park Boush & J. J. Pan, 2016. Discerning patterns of diversity from biogeographical distributions: testing models of metacommunity dynamics using non-marine ostracodes from San Salvador Island, Bahamas. Hydrobiologia 766: 305–319.

    Article  CAS  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2013. vegan: Community Ecology Package. R package version 2.0-10. http://CRAN.Rproject.org/package=vegan.

  • Pieri, V., K. Martens, L. Naselli-flores, F. Marrone & G. Rossetti, 2006. Distribution of recent ostraods in inland waters of Sicily (Southern Italy). Journal of Limnology 65: 1–8.

    Article  Google Scholar 

  • Pieri, V., C. Caserini, S. Gomarasca, K. Martens & G. Rossetti, 2007. Water quality and diversity of the recent ostracod fauna in lowland springs from Lombardy (northern Italy). Hydrobiologia 585: 79–87.

    Article  CAS  Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: toward mechanistic understanding and prediction in stream Ecology. Journal of North American Benthological Society 16: 391–409.

    Article  Google Scholar 

  • Poquet, J. M. & F. Mesquita-Joanes, 2011. Combined effects of local environment and continental biogeography on the distribution of Ostracoda. Freshwater Biology 56: 448–469.

    Article  Google Scholar 

  • QGIS Development Team, 2013. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Version 2.0.1-Dufour. http://qgis.osgeo.org.

  • R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/.

  • Rádková, V., J. Bojková, V. Křoupalová, J. Schenková, V. Syrovátka & M. Horsák, 2014. The role of dispersal mode and habitat specialisation in metacommunity structuring of aquatic macroinvertebrates in isolated spring fens. Freshwater Biology 59: 2256–2267.

    Article  Google Scholar 

  • Reeves, J. M., P. De Deckker & S. A. Halse, 2007. Groundwater Ostracods from the arid Pilbara region of northwestern Australia: distribution and water chemistry. Hydrobiologia 585: 99–118.

    Article  CAS  Google Scholar 

  • Roca, J. R., 1990a. Tipología físico-química de las fuentes de los Pirineos Centrales: síntesis regional. Limnetica 6: 57–78.

    Google Scholar 

  • Roca, J. R., 1990b. Poblamiento de las fuentes de los Pirineos Centrales: Faunística y Ecología. Ph.D. Thesis, University of Barcelona.

  • Roca, J. R. & A. Baltanás, 1993. Ecology and distribution of Ostracoda in Pyrenean springs. Journal of Crustacean Biology 13: 165–174.

    Article  Google Scholar 

  • Rosati, M., M. Cantonati, R. Primicerio & G. Rossetti, 2014. Biogeography and relevant ecological drivers in spring habitats: A review on ostracods of the Western Palearctic. International Review of Hydrobiology 99: 409–424.

    Article  Google Scholar 

  • Rossetti, G., V. Pieri & K. Martens, 2005. Recent ostracods (Crustacea, Ostracoda) found in lowland springs of the provinces of Piacenza and Parma (Northern Italy). Hydrobiologia 542: 287–296.

    Article  Google Scholar 

  • Sambugar, B., G. Dessi, A. Sapelza, A. Stenico, B. Thaler & A. Veneri, 2006. Fauna sorgentizia in Alto Adige. Provincia Autonoma di Bolzano, Alto Adige.

    Google Scholar 

  • Soininen, J., J. J. Korhonen, J. Karhu & A. Vetterli, 2011. Disentangling the spatial patterns in community composition of prokaryotic and eukaryotic lake plankton. Limnology and Oceanography 56: 508–520.

    Article  Google Scholar 

  • Stoch, F., R. Gerecke, V. Pieri, G. Rossetti & B. Sambugar, 2011. Exploring species distribution of spring meiofauna (Annelida, Acari, Crustacea) in the south-eastern Alps. Journal of Limnology 70(supplement 1): 65–76.

    Article  Google Scholar 

  • Valls, L., A. Castillo-Escrivà, F. Mesquita-Joanes & X. Armengol, 2016. Human-mediated dispersal of aquatic invertebrates with waterproof footwear. Ambio 45: 99–109.

    Article  PubMed  Google Scholar 

  • Van der Kamp, G., 1995. The hydrogeology of springs in relation to the biodiversity of spring fauna: a review. Journal of the Kansas Entomological Society 68: 4–17.

    Google Scholar 

  • Van der Meeren, T., J. E. Almendinger, E. Ito & K. Martens, 2010. The ecology of ostracodes (Ostracoda, Crustacea) in western Mongolia. Hydrobiologia 641: 253–273.

    Article  CAS  Google Scholar 

  • Wilson, D. S., 1992. Complex interactions in metacommunities, with implications for biodiversity and higher level of selection. Ecology 73: 1984–2000.

    Article  Google Scholar 

  • Winegardner, A. K., B. K. Jones, I. S. Y. Ng, T. Siqueira & K. Cottenie, 2012. The terminology of metacommunity ecology. Trends in Ecology & Evolution 27: 253–254.

    Article  Google Scholar 

  • Zhai, M., O. Nováček, D. Výravský, V. Syrovátka, J. Bojková & J. Helešic, 2015. Environmental and spatial control of ostracod assemblages in the Western Carpathian spring fens. Hydrobiologia 745: 225–239.

    Article  Google Scholar 

Download references

Acknowledgements

Datasets originating from the following Projects contributed data to the present study: CRENODAT (funded by the Autonomous Province of Trento) and EBERs (funded by the Emilia Romagna Region). We would like to acknowledge the previous contribution of A. Baltanás and G. Tapia to the early versions of the Pyrenean and Valencian datasets. GR acknowledges the support of the LifeWatch network, and VP of the Interregional Association for Participation and Study in Agribusiness, Landscape and Environment Management. Finally, we would like to thank two anonymous reviewers and the Associate Editor S. M. Thomaz for their suggestions which really improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa Rosati.

Additional information

Guest editors: Mary Kelly-Quinn, Jeremy Biggs & Stefanie von Fumetti / The Importance of Small Water Bodies: Insights from Research

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2016_2938_MOESM1_ESM.tif

Supplementary material 1 (TIFF 326 kb) Map of Emilia Romagna springs. Colours and size of points represent the scores of the significant axis of RDA on spatial variables. Geographic scale of the map is given by a grid, which size in Km is given with the letter d in the upper part of the plot

10750_2016_2938_MOESM2_ESM.tif

Supplementary material 2 (TIFF 418 kb) Map of Alps springs. Colours and size of points represent the scores of the significant axis of RDA on spatial variables. Geographic scale of the map is given by a grid, which size in Km is given with the letter d in the upper part of the plot

10750_2016_2938_MOESM3_ESM.tif

Supplementary material 3 (TIFF 509 kb) Maps of Valencia springs. Colours and size of points represent the scores of each of the three significant axis of RDA on spatial variables. Geographic scale of the map is given by a grid, which size in Km is given with the letter d in the upper part of the plot

10750_2016_2938_MOESM4_ESM.tif

Supplementary material 4 (TIFF 354 kb) Map of Pyrenees springs. Colours and size of points represent the scores of the significant axis of RDA on spatial variables. Geographic scale of the map is given by a grid, which size in Km is given with the letter d in the upper part of the plot

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosati, M., Rossetti, G., Cantonati, M. et al. Are aquatic assemblages from small water bodies more stochastic in dryer climates? An analysis of ostracod spring metacommunities. Hydrobiologia 793, 199–212 (2017). https://doi.org/10.1007/s10750-016-2938-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2938-9

Keywords

Navigation