, Volume 785, Issue 1, pp 207–217 | Cite as

Habitat associations and habitat change: seeking explanation for population decline in breeding Eurasian wigeon Anas penelope

  • Hannu PöysäEmail author
  • Johan Elmberg
  • Gunnar Gunnarsson
  • Sari Holopainen
  • Petri Nummi
  • Kjell Sjöberg
Primary Research Paper


We explored whether the recent large-scale population decline of Eurasian wigeon (Anas penelope) in Europe may be linked to long-term vegetation changes in their boreal breeding wetlands. First, we assessed the importance of Equisetum, Phragmites, and Carex stands in lake selection by pairs and in foraging habitat selection by broods. Second, in 2013–2014 we revisited 58 lakes in Sweden and Finland studied in 1990–1991, to examine if there had been any long-term change in the abundance of habitat types preferred by wigeon. Finally, using continuous long-term data on breeding numbers of wigeon in 18 of the lakes studied in 1990–1991, we examined if wigeon numbers had changed at lakes where the habitat also had changed. We found that lake occupation of nesting wigeon pairs and foraging habitat use of broods were associated with the extent of Equisetum stands. The presence and abundance of this preferred habitat declined dramatically from 1990–1991 to 2013–2014 in the lakes from which the presence–absence data of wigeon emanate. Breeding numbers of wigeon showed a long-term declining trend in lakes where Equisetum has decreased. Our results imply that the recent population decline of wigeon in Europe may be linked to decrease of Equisetum habitat.


Anas penelope Breeding Equisetum fluviatile Habitat change Herbivory 



The study was supported by Grants from the Foundation for Research of Natural Resources in Finland, by the Swedish Environmental Protection Board, and by the Nordic Council for Wildlife Research. The authors thank a large number of people who have contributed to the fieldwork. Comments by two anonymous reviewers improved the manuscript.


  1. Bakker, E. S., J. F. Pagès, R. Arthur & T. Alcoverro, 2016a. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. Ecography 39: 162–179.CrossRefGoogle Scholar
  2. Bakker, E. S., K. A. Wood, J. F. Pagès, G. F. Veend, M. J. A. Christianen, L. Santamaría, B. A. Nolet & S. Hilt, 2016b. Herbivory on freshwater and marine macrophytes: a review and perspective. Aquatic Botany. doi: 10.1016/j.aquabot.2016.04.008.Google Scholar
  3. Bender, D. J., D. A. Contreras & L. Fahrig, 1998. Habitat loss and population decline: a meta-analysis of the patch size effect. Ecology 79: 517–533.CrossRefGoogle Scholar
  4. Bennett, A. F. & D. A. Saunders, 2010. Habitat fragmentation and landscape change. In Sodhi, N. S. & P. R. Ehrlich (eds), Conservation Biology for All. Oxford University Press, Oxford: 88–106.CrossRefGoogle Scholar
  5. Bethke, R. W. & T. D. Nudds, 1995. Effects of climate change and land use on duck abundance in Canadian prairie-parklands. Ecological Applications 5: 588–600.CrossRefGoogle Scholar
  6. Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach, 2nd ed. Springer, New York.Google Scholar
  7. Burnham, K. P., D. R. Anderson & K. P. Huyvaert, 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology 65: 23–35.CrossRefGoogle Scholar
  8. Christensen, T. K. & A. D. Fox, 2014. Changes in age and sex ratios amongst samples of hunter-shot wings from common duck species in Denmark 1982-2010. European Journal of Wildlife Research 60: 303–312.CrossRefGoogle Scholar
  9. Danell, K., 1977. Short-term plant successions following the colonization of a northern Swedish lake by the muskrat, Ondatra zibethica. Journal of Applied Ecology 14: 933–947.CrossRefGoogle Scholar
  10. Danell, K., 1979. Reduction of aquatic vegetation following the colonization of a northern Swedish lake by the muskrat, Ondatra zibethica. Oecologia 38: 101–106.CrossRefGoogle Scholar
  11. Danell, K., 1996. Introductions of aquatic rodents: lessons of the muskrat Ondatra zibethicus invasion. Wildlife Biology 2: 213–220.Google Scholar
  12. Elmberg, J., P. Nummi, H. Pöysä & K. Sjöberg, 1993. Factors affecting species number and density of dabbling duck guilds in North Europe. Ecography 16: 251–260.CrossRefGoogle Scholar
  13. Finnish Invasive Alien Species Portal, 2016. Accessed 16 June 2016.
  14. Fischer, J. & D. B. Lindenmayer, 2007. Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography 16: 265–280.CrossRefGoogle Scholar
  15. Fox, A. D., J. E. Jónsson, T. Aarvak, T. Bregnballe, T. K. Christensen, K. K. Clausen, P. Clausen, L. Dalby, T. E. Holm, D. Pavón-Jordan, K. Laursen, A. Lehikoinen, S.-H. Lorentsen, A. P. Møller, M. Nordström, M. Öst, P. Söderquist & O. R. Therkildsen, 2015. Current and potential threats to Nordic duck populations – a horizon scanning exercise. Annales Zoologici Fennici 52: 193–220.CrossRefGoogle Scholar
  16. Fox, A. D., L. Dalby, T. K. Christensen, S. Nagy, T. J. S. Balsby, O. Crowe, P. Clausen, B. Deceuninck, K. Devos, C. A. Holt, M. Hornman, V. Keller, T. Langendoen, A. Lehikoinen, S.-H. Lorentsen, B. Molina, L. Nilsson, A. Stipniece, J.-C. Svenning & J. Wahl, 2016. Seeking explanations for recent changes in abundance of wintering Eurasian Wigeon (Anas penelope) in northwest Europe. Ornis Fennica 93: 12–25.Google Scholar
  17. Fretwell, S. D. & H. L. Lucas Jr., 1970. On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development. Acta Biotheoretica 19: 16–36.CrossRefGoogle Scholar
  18. Gayet, G., M. Guillemain, P. Defos du Rau & P. Grillas, 2014. Effects of mute swans on wetlands: a synthesis. Hydrobiologia 723: 195–204.CrossRefGoogle Scholar
  19. Guillemain, M., A. D. Fox, H. Pöysä, V.-M. Väänänen, T. K. Christensen, P. Triplet, V. Schricke & F. Korner-Nievergelt, 2013a. Autumn survival inferred from wing age ratios: Wigeon juvenile survival half that of adults at best? Journal of Ornithology 154: 351–358.CrossRefGoogle Scholar
  20. Guillemain, M., H. Pöysä, A. D. Fox, C. Arzel, L. Dessborn, J. Ekroos, G. Gunnarsson, T. E. Holm, T. K. Christensen, A. Lehikoinen, C. Mitchell, J. Rintala & A. P. Møller, 2013b. Effects of climate change on European ducks: what do we know and what do we need to know? Wildlife Biology 19: 404–419.CrossRefGoogle Scholar
  21. Haapanen, A., M. Helminen & H. K. Suomalainen, 1977. The summer behaviour and habitat use of the whooper swan, Cygnus c. cygnus. Finnish Game Research 36: 49–81.Google Scholar
  22. Holopainen, S., C. Arzel, L. Dessborn, J. Elmberg, G. Gunnarsson, P. Nummi, H. Pöysä & K. Sjöberg, 2015. Habitat use in ducks breeding in boreal freshwater wetlands: a review. European Journal of Wildlife Research 61: 339–363.CrossRefGoogle Scholar
  23. Jacobsen, O. W., 1991. Feeding behavior of breeding wigeon Anas penelope in relation to seasonal emergence and swarming behavior of chironomids. Ardea 79: 309–418.Google Scholar
  24. Jacobsen, O. W., 1993. Use of feeding habitats by breeding Eurasian wigeon. Canadian Journal of Zoology 71: 1046–1054.CrossRefGoogle Scholar
  25. Knudsen, H. L., B. Laubek & A. Ohtonen, 2002. Growth and survival of whooper swan cygnets reared in different habitats in Finland. Waterbirds 25: 211–220.Google Scholar
  26. Koskimies, P. & R. A. Väisänen, 1991. Monitoring Bird Populations. A Manual of Methods Applied in Finland. Zoological Museum, University of Helsinki, Helsinki.Google Scholar
  27. Kritzberg, E. S. & S. M. Ekström, 2012. Increasing iron concentrations in surface waters – a factor behind brownification? Biogeosciences 9: 1465–1478.CrossRefGoogle Scholar
  28. Lampinen, R. & T. Lahti, 2011. Kasviatlas 2010. Helsingin Yliopisto, Luonnontieteellinen keskusmuseo (Finnish Museum of Natural History Luomus), Kasvimuseo, Helsinki.
  29. Lehikoinen, A., J. Rintala, E. Lammi & H. Pöysä, 2016. Habitat-specific population trajectories in boreal waterbirds: alarming trends and bioindicators for wetlands. Animal Conservation 19: 88–95.CrossRefGoogle Scholar
  30. Mantyka-Pringle, C. S., T. G. Martin & J. R. Rhodes, 2012. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biology 18: 1239–1252.CrossRefGoogle Scholar
  31. MacCracken, J. G., V. van Ballenberghe & J. M. Peek, 1997. Habitat relationships of moose on the Copper River Delta in coastal south-central Alaska. Wildlife Monographs 136: 3–52.Google Scholar
  32. Mitchell, C., A. D. Fox, J. Harradine & I. Clausager, 2008. Measures of annual reproductive success amongst Eurasian wigeon Anas penelope. Bird Study 55: 43–51.CrossRefGoogle Scholar
  33. Monteith, D. T., J. L. Stoddard, C. D. Evans, H. A. de Wit, M. Forsius, T. Høgåsen, A. Wilander, B. L. Skjelkvåle, D. S. Jeffries, J. Vuorenmaa, B. Keller, J. Kopacek & J. Vesely, 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537–541.CrossRefPubMedGoogle Scholar
  34. Nummi, P. & H. Pöysä, 1993. Habitat associations of ducks during different phases of the breeding season. Ecography 16: 319–328.CrossRefGoogle Scholar
  35. Nummi, P. & H. Pöysä, 1995. Habitat use by different-aged duck broods and juvenile ducks. Wildlife Biology 1: 181–187.Google Scholar
  36. Nummi, P., V.-M. Väänänen & J. Malinen, 2006. Alien grazing: indirect effects of muskrats on invertebrates. Biological Invasions 8: 993–999.CrossRefGoogle Scholar
  37. Nummi, P., A. Paasivaara, S. Suhonen & H. Pöysä, 2013. Wetland use by brood-rearing female ducks in a boreal forest landscape: the importance of food and habitat. Ibis 155: 68–79.CrossRefGoogle Scholar
  38. Nummi, P., S. Holopainen, J. Rintala & H. Pöysä, 2015. Mechanisms of density dependence in ducks: importance of space and per capita food. Oecologia 177: 679–688.CrossRefPubMedGoogle Scholar
  39. Ojala, A., P. Kankaala & T. Tulonen, 2002. Growth response of Equisetum fluviatile to elevated CO2 and temperature. Environmental and Experimental Botany 47: 157–171.CrossRefGoogle Scholar
  40. Ottosson, U., R. Ottvall, J. Elmberg, M. Green, R. Gustafsson, F. Haas, N. Holmqvist, Å. Lindström, L. Nilsson, M. Svensson & M. Tjernberg, 2012. Fåglarna i Sverige – antal och förekomst. Sveriges Ornitologiska Förening, Stockholm (in Swedish with English summary).Google Scholar
  41. Pirkola, M. K. & J. Högmander, 1974. Sorsapoikueiden iänmääritys. Suomen Riista 25: 50–55. (in Finnish with English summary).Google Scholar
  42. Porzig, E. L., N. E. Seavy, T. Gardali, G. R. Geupel, M. Holyoak & J. M. Eadie, 2014. Habitat suitability through time: using time series and habitat models to understand changes in bird density. Ecosphere 5(2): 12.CrossRefGoogle Scholar
  43. Pöysä, H. & M. Pesonen, 2003. Density dependence, regulation and open-closed populations: insights from the wigeon, Anas penelope. Oikos 102: 358–366.CrossRefGoogle Scholar
  44. Pöysä, H. & J. Sorjonen, 2000. Recolonization of breeding waterfowl communities by the whooper swan: vacant niches available. Ecography 23: 342–348.CrossRefGoogle Scholar
  45. Pöysä, H., J. Rintala, A. Lehikoinen & R. A. Väisänen, 2013. The importance of hunting pressure, habitat preference and life history for population trends of breeding waterbirds in Finland. European Journal of Wildlife Research 59: 245–256.CrossRefGoogle Scholar
  46. Roach, J. K. & N. Griffith, 2015. Climate-induced lake drying causes heterogeneous reductions in waterfowl species richness. Landscape Ecology 30: 1005–1022.CrossRefGoogle Scholar
  47. Selwood, K. E., M. A. McGeoch & R. Mac Nally, 2015. The effects of climate change and land-use change on demographic rates and population viability. Biological Reviews 90: 837–853.CrossRefPubMedGoogle Scholar
  48. Smirnov, V. V. & K. Tretyakov, 1998. Changes in aquatic plant communities on the island of Valaam due to invarion by the muskrat Ondatra zibethicus L. (Rodentia, Mammalia). Biodiversity and Conservation 7: 673–690.CrossRefGoogle Scholar
  49. Suhonen, S., P. Nummi & H. Pöysä, 2011. Long term stability of habitats and their use by ducks in boreal lakes. Boreal Environmental Research 16(suppl. B): 71–80.Google Scholar
  50. Sulkava, R., 2008. Joutsenet kortteikon harventajina. Suomenselän Linnut 43: 104–105. (in Finnish).Google Scholar
  51. Toivonen, H. & P. Huttunen, 1995. Aquatic macrophytes and ecological gradients in 57 small lakes in southern Finland. Aquatic Botany 51: 197–221.CrossRefGoogle Scholar
  52. Toivonen, H. & J. Meriläinen, 1980. Impact of the muskrat (Ondatra zibethica L.) on aquatic vegetation in small Finnish lakes. Developments in Hydrobiology 3: 131–138.Google Scholar
  53. Travis, J. M., 2003. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society of London B 270: 467–473.CrossRefGoogle Scholar
  54. Valkama, J., V. Vepsäläinen & A. Lehikoinen, 2011. The Third Finnish Breeding Bird Atlas. Finnish Museum of Natural History and Ministry of Environment. Accessed 29 Jan, 2016
  55. Vuorinen, E. & A. Janatuinen, 2014. Hiidenveden kasvillisuus- ja petokalaselvitys. Silvetris Oy, Karjaa, 75 pp (in Finnish).Google Scholar
  56. Weyhenmeyer, G. A., Y. T. Prairie & L. J. Tranvik, 2014. Browning of boreal freshwaters coupled to carbon-iron interactions along the aquatic continuum. PloS One 9(2): e88104.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wood, K. A., R. A. Stillman, R. T. Clarke, F. Daunt & M. T. O’Hare, 2012. The impact of waterfowl herbivory on plant standing crop: a meta-analysis. Hydrobiologia 686: 157–167.CrossRefGoogle Scholar
  58. Wood, K. A., M. T. O’Hare, C. McDonald, K. R. Searle, F. Daunt & R. T. Stillman, 2016. Herbivore regulation of plant abundance in aquatic ecosystems. Biological Reviews. doi: 10.1111/brv.12272.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hannu Pöysä
    • 1
    Email author
  • Johan Elmberg
    • 2
  • Gunnar Gunnarsson
    • 2
  • Sari Holopainen
    • 3
  • Petri Nummi
    • 3
  • Kjell Sjöberg
    • 4
  1. 1.Management and Production of Renewable ResourcesNatural Resources Institute FinlandJoensuuFinland
  2. 2.Department of Natural SciencesKristianstad UniversityKristianstadSweden
  3. 3.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  4. 4.Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden

Personalised recommendations