Advertisement

Hydrobiologia

, Volume 780, Issue 1, pp 21–36 | Cite as

Ice-covered Lake Onega: effects of radiation on convection and internal waves

  • Damien BouffardEmail author
  • Roman E. Zdorovennov
  • Galina E. Zdorovennova
  • Natacha Pasche
  • Alfred Wüest
  • Arkady Y. Terzhevik
EUROPEAN LARGE LAKES IV

Abstract

Early-spring under-ice convection in the Petrozavodsk Bay of Lake Onega (Russia) was investigated as part of an interdisciplinary research project conducted during March 2015. Measurements performed using a thermistor chain and vertical profiling sensors were used to examine temperature dynamics in the convectively mixed and stratified layers of the lake. Radiative transfer through the ice was high leading to a large convective mixed layer (up to 20 m deep) during daytime. Convective velocity was evaluated using two different methods. It is shown that convective velocity (a maximum value of ~7.4 mm s−1, and daytime average of 3.9 mm s−1) is completely damped during the restratifying night hours. We observed internal waves in the thermocline below the convective mixed layer with intriguing variations between night and day. Maximum of internal wave energy was found to start in the afternoon and continue long after the end of solar radiation forcing. Our analysis indicates that local convective processes are key forcing mechanisms for the generation of internal waves in ice-covered lakes. We also hypothesize that spatial differential heating between the nearshore regions and the centre of the bay (e.g. density current intruding the thermocline) could be a source of internal waves in ice-covered lakes.

Keywords

Ice-covered lake Solar radiation Radiative heating Convective mixed layer Under-ice convection Internal waves 

Notes

Acknowledgements

The present study was supported by the FEEL Foundation, “Fondation pour l’Etude des Eaux du Léman”. The authors would like to thank Andrey Mitrokhov, Nikolay Palshin, Andrey Georgiev, Alexey Tolstikov, Andrey Balagansky and Maksim Potakhin (Northern Water Problems Institute, Karelian Research Centre, Russ. Acad. Sci.) for their efforts in collecting observational data. We also would like to thank Vasili Kovalenko the head of the expedition and Nikolay Filatov. First author thanks Marie-Elodie Perga for fruitful discussions and help in the field, and all scientists from the Life Under the Ice project (http://wiki.epfl.ch/ladoga). We finally thank the two anonymous reviewers for their very valuable comments.

Supplementary material

10750_2016_2915_MOESM1_ESM.docx (102 kb)
Supplementary material 1 (DOCX 101 kb)

References

  1. Ansong, J. K. & B. R. Sutherland, 2010. Internal gravity waves generated by convective plumes. Journal of Fluid Mechanics 648: 405–434.CrossRefGoogle Scholar
  2. Antenucci, J. P. & J. Imberger, 2003. The seasonal evolution of wind/internal wave resonance in Lake Kinneret. Limnology and oceanography 48: 2055–2061.CrossRefGoogle Scholar
  3. Bengtsson, L., 1996. Mixing in ice-covered lakes. Hydrobiologia 322: 91–97.CrossRefGoogle Scholar
  4. Bouffard, D. & L. Boegman, 2012. Basin scale internal waves. In Bengtsson, L., R. W. Herschy & R. W. Fairbridge (eds.), Encyclopedia of Lakes and Reservoirs. Springer, Berlin: 102–107.Google Scholar
  5. Bouffard, D. & L. Boegman, 2013. A diapycnal diffusivity model for stratified environmental flows. Dynamics of Atmospheres and Oceans 61: 14–34.CrossRefGoogle Scholar
  6. Bouffard, D., L. Boegman & Y. R. Rao, 2012. Poincaré wave-induced mixing in a large lake. Limnology and Oceanography 57: 1201–1216.CrossRefGoogle Scholar
  7. Bouffard, D., J. D. Ackerman & L. Boegman, 2013. Factors affecting the development and dynamics of hypoxia in a large shallow stratified lake: Hourly to seasonal patterns. Water Resources Research 49: 2380–2394.CrossRefGoogle Scholar
  8. Cole, G. S. & H. J. S. Fernando, 1998. Some aspects of the decay of convective turbulence. Fluid Dynamics Research 23: 161–176.CrossRefGoogle Scholar
  9. Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing & J. J. Middelburg, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 172–185.CrossRefGoogle Scholar
  10. Farmer, D. M., 1975. Penetrative convection in the absence of mean shear. Quarterly Journal of the Royal Meteorological Society 101: 869–891.CrossRefGoogle Scholar
  11. Flynn, M. R. & B. R. Sutherland, 2004. Intrusive gravity currents and internal gravity wave generation in stratified fluid. Journal of Fluid Mechanics 514: 355–383.CrossRefGoogle Scholar
  12. Gill, A. E., 1982. Atmosphere-Ocean Dynamics. Academic Press, London.Google Scholar
  13. Hampton, S. E., M. V. Moore, T. Ozersky, E. H. Stanley, C. M. Polashenski & A. W. E. Galloway, 2015. Heating up a cold subject: prospects for under-ice plankton research in lakes. Journal of Plankton Research 37: 277–284.CrossRefGoogle Scholar
  14. Jonas, T., A. Stips, W. Eugster, & A. Wüest, 2003a. Observations of a quasi shear-free lacustrine convective boundary layer: Stratification and its implications on turbulence. Journal of Geophysical Research: Oceans (1978–2012) 108: C10.Google Scholar
  15. Jonas, T., A. Y. Terzhevik, D. V. Mironov & A. Wüest, 2003b. Radiatively driven convection in an ice-covered lake investigated by using temperature microstructure technique. Journal of Geophysical Research 108: 3183.CrossRefGoogle Scholar
  16. Kang, D. & O. Fringer, 2010. On the calculation of available potential energy in internal wave fields. Journal of Physical Oceanography 40: 2539–2545.CrossRefGoogle Scholar
  17. Karlsson, J., R. Giesler, J. Persson & E. Lundin, 2013. High emission of carbon dioxide and methane during ice thaw in high latitude lakes. Geophysical Research Letters 40: 1123–1127.CrossRefGoogle Scholar
  18. Kelley, D. E., 1997. Convection in ice-covered lakes: effects on algal suspension. Journal of Plankton Research 19: 1859–1880.CrossRefGoogle Scholar
  19. Kirillin, G., C. Engelhardt, S. Golosov & T. Hintze, 2009. Basin-scale internal waves in the bottom boundary layer of ice-covered Lake Müggelsee, Germany. Aquatic Ecology 43: 641–651.CrossRefGoogle Scholar
  20. Kirillin, G., M. Leppäranta, A. Terzhevik, N. Granin, J. Bernhardt, C. Engelhardt, T. Efremova, S. Golosov, N. Palshin, P. Sherstyankin, et al., 2012. Physics of seasonally ice-covered lakes: a review. Aquatic Sciences 74: 659–682.CrossRefGoogle Scholar
  21. Kirillin, G. B., A. L. Forrest, K. E. Graves, A. Fischer, C. Engelhardt & B. E. Laval, 2015. Axisymmetric circulation driven by marginal heating in ice-covered lakes. Geophysical Research Letters 42: 20142.CrossRefGoogle Scholar
  22. Malm, J., L. Bengtsson, A. Terzhevik, P. Boyarinov, A. Glinsky, N. Palshin & M. Petrov, 1998. Field study on currents in a shallow, ice-covered lake. Limnology and oceanography 43: 1669–1679.CrossRefGoogle Scholar
  23. Matthews, P. C. & S. I. Heaney, 1987. Solar heating and its influence on mixing in ice-covered lakes. Freshwater Biology 18: 135–149.CrossRefGoogle Scholar
  24. Maxworthy, T., J. Leilich, J. E. Simpson & E. H. Meiburg, 2002. The propagation of a gravity current into a linearly stratified fluid. Journal of Fluid Mechanics 453: 371–394.CrossRefGoogle Scholar
  25. Mironov, D. V., S. D. Danilov & D. J. Olbers, 2001. Large-eddy simulation of radiatively-driven convection in ice covered lakes. In Casamitjana, X. (ed.), Proceedings of the Sixth Workshop on Physical Processes in Natural Waters. University of Girona, Girona: 71–75.Google Scholar
  26. Mironov, D., A. Terzhevik, G. Kirillin, T. Jonas, J. Malm & D. Farmer, 2002. Radiatively driven convection in ice-covered lakes: Observations, scaling, and a mixed layer model. Journal of Geophysical Research 107: 7–16.CrossRefGoogle Scholar
  27. Nash, J. D. & J. N. Moum, 2005. River plumes as a source of large-amplitude internal waves in the coastal ocean. Nature 437: 400–403.CrossRefPubMedGoogle Scholar
  28. Nieuwstadt, F. T. M. & R. A. Brost, 1986. The decay of convective turbulence. Journal of the Atmospheric Sciences 43: 532–546.CrossRefGoogle Scholar
  29. Ostrovsky, I., Y. Z. Yacobi, P. Walline & I. Kalikhman, 1996. Seiche-induced mixing: Its impact on lake productivity. Limnology and Oceanography 41: 323–332.CrossRefGoogle Scholar
  30. Petrov, M. P., A. Y. Terzhevik, R. E. Zdorovennov & G. E. Zdorovennova, 2006. The thermal structure of a shallow lake in early winter. Water Resources 33: 135–143.CrossRefGoogle Scholar
  31. Rizk, W., G. Kirillin & M. Leppäranta, 2014. Basin-scale circulation and heat fluxes in ice-covered lakes. Limnology and Oceanography 59: 445–464.CrossRefGoogle Scholar
  32. Salonen, K., M. Pulkkanen, P. Salmi & R. W. Griffiths, 2014. Interannual variability of circulation under spring ice in a boreal lake. Limnology and Oceanography 59: 2121–2132.CrossRefGoogle Scholar
  33. Sander, J., A. Simon, T. Jonas & A. Wüest, 2000. Surface turbulence in natural waters: a comparison of large eddy simulations with microstructure observations. Journal of Geophysical Research: Oceans 105: 1195–1207.CrossRefGoogle Scholar
  34. Schmid, M., M. D. Batist, N. G. Granin, V. A. Kapitanov, D. F. McGinnis, I. B. Mizandrontsev, A. I. Obzhirov & A. Wüest, 2007. Sources and sinks of methane in Lake Baikal: A synthesis of measurements and modeling. Limnology and Oceanography 52: 1824–1837.CrossRefGoogle Scholar
  35. Sorbjan, Z., 1997. Decay of convective turbulence revisited. Boundary-Layer Meteorology 82: 503–517.CrossRefGoogle Scholar
  36. Stull, R. B., 1976. Internal gravity waves generated by penetrative convection. Journal of the Atmospheric Sciences 33: 1279–1286.CrossRefGoogle Scholar
  37. Sun, C., W. D. Smyth & J. N. Moum, 1998. Dynamic instability of stratified shear flow in the upper equatorial Pacific. Journal of Geophysical Research: Oceans 103: 10323–10337.CrossRefGoogle Scholar
  38. Sutherland, B., 2010. Internal Gravity Waves. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  39. Townsend, A. A., 1964. Natural convection in water over an ice surface. Quarterly Journal of the Royal Meteorological Society 90: 248–259.CrossRefGoogle Scholar
  40. Tranvik, L. J., J. A. Downing, J. B. Cotner, S. A. Loiselle, R. G. Striegl, T. J. Ballatore, P. Dillon, K. Finlay, K. Fortino, L. B. Knoll, P. L. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D. M. Leech, S. L. McCallister, D. M. McKnight, J. M. Melack, E. Overholt, J. A. Porter, Y. Prairie, W. H. Renwick, F. Roland, B. S. Sherman, D. W. Schindler, S. Sobek, A. Tremblay, M. J. Vanni, A. M. Verschoor, E. von Wachenfeldt & G. A. Weyhenmeyer, 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54: 2298–2314.CrossRefGoogle Scholar
  41. Turner, J., 1973. Buoyancy effects in fluids. University Press, Cambridge: 403.CrossRefGoogle Scholar
  42. Vehmaa, A. & K. Salonen, 2009. Development of phytoplankton in Lake Pääjärvi (Finland) during under-ice convective mixing period. Aquatic Ecology 43: 693–705.CrossRefGoogle Scholar
  43. Wüest, A. & A. Lorke, 2003. Small-scale hydrodynamics in lakes. Annual Review of Fluid Mechanics 35: 373–412.CrossRefGoogle Scholar
  44. Wüest, A., & M. Schmid, 2012. Physical Limnology Handbook of Environmental Fluid Dynamics, Volume One: Overview and Fundamentals. H. J. Fernando: pp. 153–168.Google Scholar
  45. Wunsch, C., 1972. Bermuda sea level in relation to tides, weather, and baroclinic fluctuations. Reviews of Geophysics 10: 1–49.CrossRefGoogle Scholar
  46. Zdorovennov, R., N. Palshin, G. Zdorovennova, T. Efremova & A. Terzhevik, 2013. Interannual variability of ice and snow cover of a small shallow lake. Estonian Journal of Earth Sciences 62: 26–32.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Damien Bouffard
    • 1
    Email author
  • Roman E. Zdorovennov
    • 2
  • Galina E. Zdorovennova
    • 2
  • Natacha Pasche
    • 1
  • Alfred Wüest
    • 1
    • 3
  • Arkady Y. Terzhevik
    • 2
  1. 1.Physics of Aquatic Systems Laboratory, Margaretha Kamprad ChairEPFL-ENAC-IEE-APHYSLausanneSwitzerland
  2. 2.Karelian Research Center, Northern Water Problems InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Eawag, Swiss Federal Institute of Aquatic Science and Technology, Surface Waters – Research and ManagementKastanienbaumSwitzerland

Personalised recommendations