Skip to main content

Flow-related dynamics in suspended algal biomass and its contribution to suspended particulate matter in an agricultural river network of the Minnesota River Basin, USA

Abstract

Factors controlling phytoplankton dynamics in lotic systems remain poorly understood relative to those in standing waters, especially in smaller and mid-size streams. Here, we evaluate relationships between stream flow, suspended algal biomass, and particulate organic carbon over multiple years for a mid-size river network draining an intensively managed agricultural landscape in the Midwestern USA. As expected, we found that mid-size reaches (4th–6th order) yielded higher chlorophyll concentrations than smaller reaches (1st–3rd order); however, all reach types exhibited chlorophyll concentrations that could be considered eutrophic. Suspended algae accounted for approximately 20% of total suspended carbon in the river network, on average. Over time, the highest levels of suspended algal biomass across all sites were associated with intermediate–high flow conditions (above median discharge but below ~25% exceedance probabilities). Lakes and wetlands were also sources of suspended algal biomass to the stream network, although substantial phytoplankton production appeared to occur in-channel apart from lentic inputs. Our findings highlight the importance of flow as a regulator of suspended algal biomass, and suggest that moderate flow events act to mobilize algae from benthic habitats or other refugia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Banse, K., 1977. Determining the carbon-to-chlorophyll ratio of natural phytoplankton. Marine Biology 41: 199–212.

    CAS  Article  Google Scholar 

  • Belmont, P., K. B. Gran, S. P. Schottler, P. R. Wilcock, S. S. Day, C. Jennings, J. W. Lauer, E. Viparelli, J. K. Willenbring, D. R. Engstrom & G. Parker, 2011. Large shift in source of fine sediment in the Upper Mississippi River. Environmental Science and Technology 45: 8804–8810.

    CAS  Article  PubMed  Google Scholar 

  • Bernot, M. J., J. L. Tank, T. V. Royer & M. B. David, 2006. Nutrient uptake in streams draining agricultural catchments of the Midwestern United States. Freshwater Biology 51: 499–509.

    CAS  Article  Google Scholar 

  • Bianchi, T. S., L. A. Wysocki, M. Stewart, T. R. Filley & B. A. McKee, 2007. Temporal variability in terrestrially-derived sources of particulate carbon in the lower Mississippi River and its upper tributaries. Geochimica et Cosmochimica Acta 71: 4425–4437.

    CAS  Article  Google Scholar 

  • Billen, G., J. Garnier, J. Némery, M. Sebilo, A. Sferratore, S. Barles, P. Benoit & M. Benoît, 2007. A long-term view of nutrient transfers through the Seine river continuum. Science of the Total Environment 375: 80–97.

    CAS  Article  PubMed  Google Scholar 

  • Bukaveckas, P. A., A. MacDonald, A. Aufdenkampe, J. H. Chick, J. E. Havel, R. Schultz, T. R. Angradi, D. W. Bolgrien, T. M. Jicha & D. Taylor, 2011. Phytoplankton abundance and contributions to suspended particulate matter in the Ohio, Upper Mississippi and Missouri Rivers. Aquatic Sciences 73: 419–436.

    CAS  Article  Google Scholar 

  • Carpenter, S. R., E. H. Stanley & M. J. Vander Zanden, 2011. State of the world’s freshwater ecosytems: physical, chemical, and biological changes. Annual Reviews of Environment and Resources 36: 75–99.

    Article  Google Scholar 

  • Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O’Neill, J. Paruelo, R. G. Raskin, P. Sutton & M. van den Belt, 2007. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.

    Article  Google Scholar 

  • Davies-Colley, R. J., D. J. Ballantine, S. H. Elliot, A. Swales, A. O. Hughes & M. P. Gall, 2014. Light attenuation – a more effective basis for the management of fine suspended sediment than mass concentration? Water Science and Technology 69: 1867–1874.

    CAS  Article  PubMed  Google Scholar 

  • DeLaney, T. A., 1995. Benefits to downstream flood attenuation and water quality as a result of constructed wetlands in agricultural landscapes. Journal of Soil and Water Conservation 50: 620–626.

    Google Scholar 

  • Descy, J.-P. & V. Gosselain, 1994. Development and ecological importance of phytoplankton in a large lowland river (Rive Meuse, Belgium). Hydrobiologia 289: 139–155.

    CAS  Article  Google Scholar 

  • Dodds, W. K., 2006. Eutrophication and trophic state in rivers and streams. Limnology and Oceanography 51: 671–680.

    CAS  Article  Google Scholar 

  • Finlay, J. C., 2011. Stream size and human influences on ecosystem production in river networks. Ecosphere 2(1): 21.

    Google Scholar 

  • Foufoula-Georgiou, E., Z. Takbiri, J. A. Czuba & J. Schwenk, 2015. The change of nature and the nature of change in agricultural landscapes: hydrologic regime shifts modulate ecological transitions. Water Resources Research 51: 6649–6671.

    Article  Google Scholar 

  • Geider, R. J., 1987. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. The New Phytologist 106: 1–34.

    CAS  Article  Google Scholar 

  • Gordon, L. J., G. D. Peterson & E. M. Bennett, 2008. Agricultural modifications of hydrological flows create ecological surprises. Trends in Ecology and Evolution 23: 211–219.

    Article  PubMed  Google Scholar 

  • Gosselain, V., L. Viroux & J.-P. Descy, 1998. Can a community of small-bodied grazers control phytoplankton in rivers? Freshwater Biology 39: 9–24.

    Article  Google Scholar 

  • Gran, K.B., P. Belmont, S.S. Day, C. Jennings, A. Johnson, L. Perge & P.R. Wilcock, 2009. Geomorphic evolution of the Le Sueur River, Minnesota, USA, and implications for current sediment loadings. In: James, L.A., S.L. Rathburn & G.R. Whittecar (eds), Management and Restoration of Fluvial Systems with Broad Historical Changes and Human Impacts: Geological Society of America Special Paper 451, pp. 119–130.

  • Gran, K. B., P. Belmont, S. S. Day, N. Finnegan, C. Jennings, J. W. Lauer & P. R. Wilcock, 2011. Landscape evolution in south-central Minnesota and the role of geomorphic history on modern erosional processes. GSA Today 21: 7–9.

    Article  Google Scholar 

  • Griffiths, N. A., J. L. Tank, S. S. Roley & M. L. Stephen, 2012. Decomposition of maize leaves and grasses in restored agricultural streams. Freshwater Science 31: 848–864.

    Article  Google Scholar 

  • Griffiths, N. A., J. L. Tank, T. V. Royer, S. S. Roley, E. J. Rosi-Marshall, M. R. Whiles, J. J. Bealieu & L. T. Johnson, 2013. Agricultural land use alters the seasonality and magnitude of stream metabolism. Limnology and Oceanography 58: 1513–1529.

    CAS  Article  Google Scholar 

  • Hilton, J., M. O’Hare, M. J. Bowes & J. I. Jones, 2006. How green is my river? A new paradigm of eutrophication in rivers. Science of the Total Environment 365: 66–83.

    CAS  Article  PubMed  Google Scholar 

  • Hladyz, S., K. Ǻbjörnsson, E. Chauvet, M. Dobson, A. Elosegi, V. Ferreira, T. Fleituch, M. O. Gessner, P. S. Giller, V. Gulis, S. A. Hutton, J. O. Lacoursiere, S. Lamothe, A. Lecerf, B. Malmqvist, B. G. Mckie, M. Nistorescu, E. Preda, M. P. Riipinen, G. Rîşnoveanu, M. Schindler, S. D. Tiegs, L. B.-M. Vought & G. Woodward, 2011. Stream ecosystem functioning in an agricultural landscape: the importance of terrestrial-aquatic linkages. Advances in Ecological Research 44: 211–276.

    Article  Google Scholar 

  • Honti, M., V. Istvánovics & A. S. Kovács, 2010. Balancing between retention and flushing in river networks – optimizing nutrient management to improve trophic state. Science of the Total Environment 408: 4712–4721.

    CAS  Article  PubMed  Google Scholar 

  • Hothorn, T., Bretz F., Westfall P., Heiberger R.M., Schuetzenmeister A. & Scheibe S. (2016) Package ‘multcomp’. Simultaneous inference in general parametric models. Project for Statistical Computing, Vienna, Austria.

  • Huber, V., C. Wagner, D. Gerten & R. Adrian, 2012. To bloom or not to bloom: contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers. Oecologia 169: 245–256.

    Article  PubMed  Google Scholar 

  • Humphries, P., H. Keckeis & B. Finlayson, 2014. The river wave concept: integrating river ecosystem models. BioScience 64: 870–882.

    Article  Google Scholar 

  • Istvánovics, V. & M. Honti, 2011. Phytoplankton growth in three rivers: the role of meroplankton and the benthic retention hypothesis. Limnology and Oceanography 56: 1439–1452.

    Article  Google Scholar 

  • Lenhart, C. F., K. N. Brooks, D. Heneley & J. A. Magner, 2010. Spatial and temporal variation in suspended sediment, organic matter, and turbidity in a Minnesota prairie river: implications for TMDLs. Environmental Monitoring and Assessment 165: 435–447.

    CAS  Article  PubMed  Google Scholar 

  • Lenhart, C. F., E. S. Verry, K. N. Brooks & J. A. Magner, 2011. Adjustment of prairie pothole streams to land-use, drainage and climate changes and consequences for turbidity impairment. River Research and Applications 28: 1609–1619.

    Article  Google Scholar 

  • Michalak, A. M., E. J. Anderson, D. Beletsky, S. Boland, N. S. Bosch, T. B. Bridgeman, J. D. Chaffin, K. Cho, R. Confesor, I. Daloglu, J. V. DePinto, M. A. Evans, G. L. Fahnenstiel, L. He, J. C. Ho, L. Jenkins, T. H. Johengen, K. C. Kuo, E. LaPorte, X. Liu, M. R. McWilliams, M. R. Moore, D. J. Posselt, R. P. Richards, D. Scavia, A. L. Steiner, E. Verhamme, D. M. Wright & M. A. Zagorski, 2013. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences 110: 6448–6452.

    CAS  Article  Google Scholar 

  • MNDNR, 2015a. Minnesota Department of Natural Resources. Technical procedures for updating the National Wetlands Inventory of Southern Minnesota.

  • MNDNR, 2015b. Minnesota Department of Natural Resources. DNR/MPCA cooperative stream gaging, http://www.dnr.state.mn.us/waters/csg/index.html.

  • MPCA, 2012. LeSueur River Watershed Monitoring and Assessment Report. Document number: w1-ws3-07020011b. Minnesota Pollution Control Agency, St. Paul, Minnesota.

  • Pinheiro J., Bates D., DebRoy S. & Sarkar D. (2013) Package nlme: linear and nonlinear mixed effects models. R package version 3.1-109. R Project for Statistical Computing, Vienna, Austria.

  • Prygiel, J. & M. Leitao, 1994. Cyanophycean blooms in the reservoir of Val Joly (northern France) and their development in downstream rivers. Hydrobiologia 289: 85–96.

    CAS  Article  Google Scholar 

  • Reichwaldt, E.S. & A. Ghadouani, 2012. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: Between simplistic scenarios and complex dynamics.

  • Reimann, B., P. Simonsen & L. Stensgaard, 1989. The carbon and chlorophyll content of phytoplankton from various nutrient regimes. Journal of Plankton Research 11: 1037–1045.

    Article  Google Scholar 

  • Reynolds, C. S., 2000. Hydroecology of river plankton: the role of variability in channel flow. Hydrological Processes 14: 3119–3132.

    Article  Google Scholar 

  • Reynolds, C. S. & J. P. Descy, 1996. The production, biomass and structure of phytoplankton in large rivers. Large Rivers 10: 161–187.

    Google Scholar 

  • Reynolds, C. S., P. A. Carling & K. J. Beven, 1991. Flow in river channels: new insights into hydraulic retention. Archiv für Hydrobiologie 121: 171–179.

    Google Scholar 

  • Sabater, S., J. Artigas, C. Durán, M. Pardos, A. M. Romaní, E. Tornés & I. Ylla, 2008. Longitudinal development of chlorphyll and phytoplankton assemblages in a regulated large river (the Ebro River). Science of the Total Enviroment 404: 196–206.

    CAS  Article  Google Scholar 

  • Schmidt, A., 1994. Main characteristics of the phytoplankton of the Southern Hungarian section of the River Danube. Hydrobiologia 289: 97–108.

    Article  Google Scholar 

  • Stevenson, R. J., 2010. Algae of River Ecosystems. In Likens, G. E. (ed.), River Ecosystem Ecology: A Global Perspective. Academic Press, Elsevier, San Diego: 81–88.

    Google Scholar 

  • Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model: An heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70: 305–308.

    Article  Google Scholar 

  • Townsend, S. A., M. Przybylska & M. Miloshis, 2012. Phytoplankton composition and constraints to biomass in the middle reaches of an Australian tropical river during base flow. Marine and Freshwater Research 63: 48–59.

    Article  Google Scholar 

  • Turnipseed, D.P. & V.B. Sauer, 2010. Discharge measurements at gaging stations: U.S. Geological Survey Techniques and Methods book 3, chap. A8: 87 p. https://pubs.usgs.gov/tm/tm3-a8/pdf/tm3-a8.pdf.

  • USGS, 2015. U.S. Geological Survey, National Hydrography Dataset. Denver, Colorado. http://nhd.usgs.gov/.

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Viroux, L., 1997. Zooplankton development in two large lowland rivers, the Moselle (France) and the Meuse (Belgium), in 1993. Journal of Plankton Research 19: 1743–1762.

    Article  Google Scholar 

  • Walks, D. J., 2007. Persistence of plankton in flowing water. Canadian Journal of Fisheries and Aquatic Sciences 64: 1693–1702.

    Article  Google Scholar 

  • Walks, D. J. & H. Cyr, 2004. Movement of plankton through lake stream systems. Freshwater Biology 49: 745–759.

    Article  Google Scholar 

  • Welker, M. & N. Walz, 1998. Can mussels control the plankton in rivers? – a planktological approach applying a Lagrangian sampling strategy. Limnology and Oceanography 43: 753–762.

    Article  Google Scholar 

  • Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography 39: 1985–1992.

    CAS  Article  Google Scholar 

  • Withers, P. J. A., C. Neal, H. P. Jarvie & D. G. Doody, 2014. Agriculture and eutrophication: where do we go from here? Sustainability 6: 5853–5875.

    Article  Google Scholar 

  • Yu, Q., Y. Chen, Z. Liu, N. van de Giesen & D. Zhu, 2015. The influence of a eutrophic lake to the river downstream: spatiotemporal algal composition changes and the driving factors. Water 7: 2184–2201.

    Article  Google Scholar 

  • Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation under Grant No. 1209402 Water, Sustainability and Climate (WSC)—Category 2, Collaborative: Climate and human dynamics as amplifiers of natural change: a framework for vulnerability assessment and mitigation planning. We thank many people who contributed to the collection and processing of samples in the field and the lab, and without whom this work would not have been possible: Sandra Brovold, Shelly Rorer, Katie Kemmit, Erika Senyk, Andrea Keeler, Wendy Hughes, Nick Omodt, Rachel Van Allen, Cathleen Nyugen, Sally Donovan, Alex Bahr, Anika Bratt, Anna Baker, Winnie Winikoff, Evelyn Boardman, and Ben Janke. We also thank two anonymous reviewers for their careful and very helpful comments on an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine L. Dolph.

Additional information

Handling editor: Judit Padisák

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dolph, C.L., Hansen, A.T. & Finlay, J.C. Flow-related dynamics in suspended algal biomass and its contribution to suspended particulate matter in an agricultural river network of the Minnesota River Basin, USA. Hydrobiologia 785, 127–147 (2017). https://doi.org/10.1007/s10750-016-2911-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2911-7

Keywords

  • Autochthonous
  • River continuum concept
  • River wave concept
  • Longitudinal
  • Phytoplankton
  • Chlorophyll