Advertisement

Hydrobiologia

, Volume 780, Issue 1, pp 37–46 | Cite as

CDOM concentrations of large Finnish lakes relative to their landscape properties

  • Lauri ArvolaEmail author
  • Cecilia Äijälä
  • Matti Leppäranta
EUROPEAN LARGE LAKES IV

Abstract

Coloured dissolved organic matter (CDOM) modifies the light penetration into water bodies due to stronger absorbance of UV and short wavelengths of light. Therefore, in natural waters with high CDOM concentration, the spectrum of sunlight is shifted towards brown, also referred to as brownification. Here, the relation between the spectrophotometrically measured water colour (CDOM) and landscape properties is examined. These properties explained at best > 40% of the CDOM variability among the study lakes larger than 10 km2. The key “permanent” landscape variables were lake percentage (Lake%) in the uppermost catchment area, and the peat land coverage (Peat%) of the catchment, which indeed was strongly correlated with lake elevation above the sea level. High Lake % indicated low CDOM concentration, while high Peat% indicated the opposite. Relative to the Peat% of the catchment, the CDOM concentrations were, on average, slightly higher in medium-size lakes (area 10–100 km2) than in large lakes (area > 100 km2), while relative to Lake% the concentrations declined more in medium-size lakes.

Keywords

Dissolve Organic Carbon Concentration Lake Area Dissolve Organic Matter Large Lake Coloured Dissolve Organic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank those Finnish government organizations which helped us in collecting the samples in 2014, primarily the regional centres of Economic Development, Transport and Environment, Konnevesi Research Station of the University of Jyväskylä, and Kokemäenjoki and Saimaa Water Protection Associations. We also thank Ulla Heikkilä, Alpo Hassinen, and Risto Latvanen for their help, and Marja-Leena Vitie for the photometer measurements in 2014. Dr. John Loehr kindly checked the English language.

References

  1. Arst, H., A. Erm, A. Herlevi, T. Kutser, M. Leppäranta, A. Reinart & J. Virta, 2008. Optical properties of boreal lake waters in Finland and Estonia. Boreal Environment Research 13: 133–158.Google Scholar
  2. Arvola, L., 1999. The load of organic carbon, nitrogen and phosphorus from two large drainage basins (River Kitka and River Oulanka) in NE Finland. Fennia 177: 17–25.Google Scholar
  3. Arvola, L., K. Salonen & M. Rask, 1990. Chemical budgets for a small dystrophic lake in southern Finland. Limnologica 20: 243–251.Google Scholar
  4. Arvola, L., K. Salonen & M. Rask, 1999. Trophic interactions. In Eloranta, P. & J. Keskitalo (eds), Limnology of Humic Waters. Backhuys Publishers, Leiden: 265–279.Google Scholar
  5. Arvola, L., M. Rask, J. Ruuhijärvi, T. Tulonen, J. Vuorenmaa, T. Ruoho-Airola & J. Tulonen, 2010. Long-term patterns in pH and colour in small acidic boreal lakes of varying hydrological and landscape settings. Biogeochemistry 101: 269–279.CrossRefGoogle Scholar
  6. Arvola, L., M. Järvinen & T. Tulonen, 2011. Long-term trends and regional differences of phytoplankton in large Finnish lakes. Hydrobiologia 660: 125–134.CrossRefGoogle Scholar
  7. Arvola, L., E. Einola & M. Järvinen, 2015. Landscape properties and precipitation as determinants for high summer nitrogen load from boreal catchments. Landscape Ecology 30: 429–442.CrossRefGoogle Scholar
  8. Einola, E., M. Rantakari, P. Kankaala, P. Kortelainen, A. Ojala, H. Pajunen, S. Mäkelä & L. Arvola, 2011. Carbon pools and fluxes in a chain of five boreal lakes: a dry and wet year comparison. Journal of Geophysical Research. doi: 10.1029/2010JG001636.Google Scholar
  9. Erlandsson, M., I. Buffam, J. Folster, H. Laudon, J. Temnerud, G. A. Weyhenmeyer & K. Bishop, 2008. Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Global Change Biology 14: 1191–1198.CrossRefGoogle Scholar
  10. Evans, C. D., D. T. Monteith & D. M. Cooper, 2005. Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environmental Pollution 137: 55–71. doi: 10.1016/j.envpol.2004.12.031.CrossRefPubMedGoogle Scholar
  11. Evans, C. D., P. J. Chapman, J. M. Clark, D. T. Monteith & M. S. Cresser, 2006. Alternative explanations for rising dissolved organic carbon export from organic soils. Global Change Biology 12: 1–10.CrossRefGoogle Scholar
  12. Freeman, C., C. D. Evans, D. T. Monteith, B. Reynolds & N. Fenner, 2001. Export of organic carbon from peat soils. Nature 412: 785.CrossRefPubMedGoogle Scholar
  13. Freeman, C., N. Fenner, N. J. Ostle, H. Kang, D. J. Dowrick, B. Reynolds, M. A. Lock, D. Sleep, S. Hughes & J. Hudson, 2004. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430: 195–198.CrossRefPubMedGoogle Scholar
  14. Heikkinen, K., 1990. Nature of dissolved organic matter in the drainage basin of a boreal humic river in northern Finland. Journal of Environmental Quality 19: 649–657.CrossRefGoogle Scholar
  15. Heikkinen, K., 1994. Organic substances in soil and water: a collection of papers presented at the International Conference on Organic Substances in Soil and Water, Lancaster, UK, 14–17 September 1992. The science of the total environment 152: 81–89.Google Scholar
  16. Hudson, J. J., P. J. Dillon & K. M. Somers, 2003. Long-term patterns in dissolved organic carbon in boreal lakes: the role of incident radiation, precipitation, air temperature, southern oscillation and acid deposition. Hydrology and Earth System Sciences 7: 390–398.CrossRefGoogle Scholar
  17. Huotari, J., H. Nykänen, M. Forsius & L. Arvola, 2013. Effect of catchment characteristics on aquatic carbon export from a boreal catchment and its importance in regional carbon cycling. Global Change Biology. doi: 10.1111/gcb.12333.PubMedGoogle Scholar
  18. Huttunen, I., H. S. Lehtonen, M. Huttunen, V. Piirainen, M. Korppoo & N. Veijalainen, 2015. Effects of climate change and agricultural adaptation on nutrient loading from Finnish catchments to the Baltic Sea. Science of the Total Environment 529: 168–181. doi: 10.1016/j.scitotenv.2015.05.055.CrossRefPubMedGoogle Scholar
  19. Jones, R. I., 1992. The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229: 73–91.CrossRefGoogle Scholar
  20. Jones, R. I., 1998. Chapter 7: Phytoplankton, primary production and nutrient cycling. In Hessen, D. O. & L. Tranvik (eds), Aquatic Humic Substances: Ecology and Biogeochemistry. Ecological Studies, Vol. 133. Springer, New York: 145–175.CrossRefGoogle Scholar
  21. Kortelainen, P., 1993. Content of total organic carbon in Finnish lakes and its relationship to catchment characteristic. Canadian Journal of Fisheries and Aquatic Sciences 50: 1477–1483.CrossRefGoogle Scholar
  22. Kortelainen, P., T. Mattsson, L. Finer, M. Ahtiainen, S. Saukkonen & T. Sallantaus, 2006. Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquatic Sciences 68: 453–468. doi: 10.1007/s00027-006-0833-6.CrossRefGoogle Scholar
  23. Laine, M. P. P., R. Strömmer & L. Arvola, 2014. DOC and CO2-C releases from pristine and drained peat soils in response to water table fluctuations: a mesocosm experiment. Applied and Environmental Soil Science 2014. Article ID 912816. 10 p. doi:  10.1155/2014/912816.
  24. Lepistö, A., K. Granlund, P. Kortelainen & A. Raike, 2006. Nitrogen in river basins: sources, retention in the surface waters and peatlands, and fluxes to estuaries in Finland. Science of the Total Environment 365: 238–259.CrossRefPubMedGoogle Scholar
  25. Lepistö, A., P. Kortelainen & T. Mattsson, 2008. Increased organic C and N leaching in a northern boreal river basin in Finland. Global Biogeochemical Cycles. doi: 10.1029/2007GB003175.Google Scholar
  26. Mattsson, T., P. Kortelainen & A. Räike, 2005. Export of DOM from boreal catchments: impacts of land use cover and climate. Biogeochemistry 76: 373–394.CrossRefGoogle Scholar
  27. Montanarella, L., R. J. A. Jones & R. Hiederer, 2006. The distribution of peatland in Europe. Mires and Peat, Vol. 1. http://www.mires-and-peat.net. ISSN 1819-754X
  28. Monteith, D. T., J. L. Stoddard, C. D. Evans, H. A. de Wit, M. Forsius, T. Høgåsen, A. Wilander, B. L. Skjelkvåle, D. S. Jeffries, J. Vuorenmaa, B. Keller, J. Kopácek & J. Vasely, 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537–541.CrossRefPubMedGoogle Scholar
  29. Pennanen, V. & T. Frisk, 1984. A statistical model for conversion of absorbance measurements with significant iron interference into organic carbon in a polyhumic lake. Aqua Fennica 14: 171–178.Google Scholar
  30. Pilke, A. (toim.) 2012. Ohje pintaveden tyypin määrittämiseksi. Verkkojulkaisu. Suomen ympäristökeskus (Finnish Environment Institute; www.ymparisto.fi/download/noname/%7BF9A5855D-032C…/74875). (In English: Instruction to determine the type of a surface water).
  31. Poikane, S., M. van den Berg, J. Ortiz-Casas, G. Phillips, A. Lyche Solheim, D. Tierney, G. Wolfram & P. Nõges, 2009. Lake assessment strategy in European Union (EU): case study of European large lakes. Verhandlungen des Internationalen Verein Limnologie 30: 1007–1012.Google Scholar
  32. Rantakari, M., P. Kortelainen, J. Vuorenmaa, J. Mannio & M. Forsius, 2004. Finnish Lake Survey: the role of catchment attributes in determining nitrogen, phosphorus, and organic carbon concentrations. Water, Air, & Soil Pollution: Focus 4: 683–699.CrossRefGoogle Scholar
  33. Räike, A., P. Kortelainen, T. Mattsson & D. N. Thomas, 2012. 36 year trends in dissolved organic carbon export from Finnish rivers to the Baltic Sea. Science of The Total Environment 435–436: 188–201.CrossRefPubMedGoogle Scholar
  34. Sarkkola, S., H. Koivusalo, A. Laurén, P. Kortelainen, T. Mattsson, M. Palviainen, S. Piirainen, M. Starr & L. Finér, 2009. Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments. The Science of the Total Environment 408: 92–101.CrossRefPubMedGoogle Scholar
  35. Sarkkola, S., M. Nieminen, H. Koivusalo, A. Laurén, P. Kortelainen, T. Mattsson, M. Palviainen, S. Piirainen, M. Starr & L. Finér, 2013. Iron concentrations are increasing in surface waters from forested headwater catchments in eastern Finland. Science of the Total Environment 463–464: 683–689.CrossRefPubMedGoogle Scholar
  36. Schindler, D. W., S. E. Bayley, P. J. Curtis, B. R. Parker, M. P. Stainton & C. A. Kelly, 1992. Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in precambrian shield lakes. Hydrobiologia 229: 1–21.CrossRefGoogle Scholar
  37. Schindler, D. W., P. J. Curtis, S. E. Bayley, B. R. Parker, K. G. Beaty & M. P. Stainton, 1997. Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry 36: 9–28.CrossRefGoogle Scholar
  38. Skjelkvåle, B. L., J. Mannio, A. Wilander & T. Andersen, 2001. Chemistry of lakes in the Nordic region – Denmark, Finland with Åland, Iceland, Norway with Svalbard and Bear Island, and Sweden. NIVA Acid Rain Research, Report. 53.Google Scholar
  39. Sobek, S., L. J. Tranvik, Y. T. Prairie, P. Kortelainen & J. J. Cole, 2007. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnology & Oceanography 52: 1208–1219.CrossRefGoogle Scholar
  40. Smith, R. C. & K. S. Baker, 1981. Optical properties of the clearest natural waters (200–800 nm). Applied Optics 20: 177–184.CrossRefPubMedGoogle Scholar
  41. Stevenson, F. J., 1994. Humus Chemistry: Genesis, Composition, Reactions, 2nd Edn. ISBN: 978-0-471-59474-1.Google Scholar
  42. Tattari, S., M. Puustinen, J. Koskiaho, E. Röman & J. Riihimäki, 2015. Vesistöjen ravinnekuormituksen lähteet ja vähentämismahdollisuudet (In English: Sources of nutrient loading to the water bodies and possibilities to reduce it). Suomen ympäristökeskuksen raportteja (Finnish Environment Institute, Reports) 35: 1–73.Google Scholar
  43. Temnerud, J., J. Hytteborn, M. N. Futter & S. J. Köhler, 2014. Evaluating common drivers for color, iron and organic carbon in Swedish watercourses. AMBIO 43: 30–44.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tranvik, L. J. & M. Jansson, 2002. Climate change - Terrestrial export of organic carbon. Nature 415: 861–862.CrossRefGoogle Scholar
  45. Weyhenmeyer, G. A., Y. T. Prairie & L. J. Tranvik, 2014. Browning of boreal freshwaters coupled to carbon-iron interactions along the aquatic continuum. PloS One 9: e88104.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Weyhenmeyer, G. A., R. A. Müller, M. Norman & L. J. Tranvik, 2015. Sensitivity of freshwaters to browning in response to future climate change. Climatic Change. doi: 10.1007/s10584-015-1514-z.Google Scholar
  47. Witting, R., 1914. Redogörelse afgiven af arbetsutskottet för undersökning af de finska insjöarnas vatten och plankton. II. Optisk och kemisk undersökning af vattenprofven från sommaren 1913. Fennia 35: 1–41.Google Scholar
  48. Xiao, Y.-H., A. Räike, H. Hartikainen & A. V. Vähätalo, 2015. Iron as a source of color in river waters. Science of the Total Environment 536: 914–923.CrossRefPubMedGoogle Scholar
  49. Ylitalo, E. (ed.) 2013. Metsätilastollinen vuosikirja 2013 - Skogsstatistisk Årsbok - Finnish Statistical Yearbook of Forestry. SVT Maa-, metsä- ja kalatalous. Metsäntutkimuslaitos, Vantaa. 450 p. ISBN 978-951-40-2450-4 ISBN 978-951-40-2449-8.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lauri Arvola
    • 1
    Email author
  • Cecilia Äijälä
    • 2
  • Matti Leppäranta
    • 2
  1. 1.Lammi Biological StationUniversity of HelsinkiLammiFinland
  2. 2.Department of PhysicsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations