Skip to main content
Log in

Dressing down: convergent reduction of the mental disc in Garra (Teleostei: Cyprinidae) in the Middle East

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In the Middle East, species of Garra are believed to have invaded the area in two independent waves from the Indo-Malayan biogeographic region. This hypothesis is based on the structure of the mental disc, a unique specialization of the lower lip, which is believed to be an adaptation to fast-flowing waters. While several species have such a mental disc, others completely lack a mental disc, being adapted to slow-moving water or to subterranean life. In this study, the phylogenetic relationships of Middle Eastern Garra species, including 16 described and 4 undescribed species, were analysed using mitochondrial cytochrome c oxidase I sequences. The results are concordant with traditional hypotheses on two invasion events; however, these invasion events are independent from the presence, absence or shape of the mental disc. We postulate convergent reduction of the mental disc in 5–6 independent lineages of Garra in the Middle East.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller & D. J. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25(17): 3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey, R. G. & L. Ropes, 1998. Ecoregions: the ecosystem geography of the oceans and continents. Springer, Berlin.

    Book  Google Scholar 

  • Bănărescu, P., 1992. Zoogeography of Fresh Waters. Vol. 2. Distribution and Dispersal of Freshwater Animals in North America and Eurasia. Aula-Verlag, Wiesbaden: 520–1091.

    Google Scholar 

  • Behrens-Chapuis, S., F. Herder, M. Geiger, H. Esmaeili, N. Hamidan, M. Özuluğ & R. Šanda, 2015. Adding nuclear rhodopsin data where mitochondrial COI indicates discrepancies – can this marker help to explain conflicts in cyprinids? DNA Barcodes 3(1): 187–199.

    Article  Google Scholar 

  • Briggs, J. C., 1995. Global Biogeography. Elsevier.

  • Brown, W. L. & E. O. Wilson, 1956. Character displacement. Systematic Zoology 5(2): 49–64.

    Article  Google Scholar 

  • Chu, X. & Y. Province, 1989. The Fishes of Yunnan, China, Part I. Cyprinidae. Science Press, Beijing.

    Google Scholar 

  • Coad, B. W., 2010. Freshwater Fishes of Iraq. Pensoft, Sofia and Moscow.

    Google Scholar 

  • Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8): 772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Laubenfels, D. J., 1975. Mapping the world’s vegetation. Regionalization of formations and flora. Syracuse Geographical Series (USA) no 4.

  • Drummond, A. J., M. A. Suchard, D. Xie & A. Rambaut, 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29(8): 1969–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand, J.-D., P. Bianco, J. Laroche & A. Gilles, 2003. Insight into the origin of endemic Mediterranean ichthyofauna: phylogeography of Chondrostoma genus (Teleostei, Cyprinidae). Journal of Heredity 94(4): 315–328.

    Article  CAS  PubMed  Google Scholar 

  • Ellenberg, H. & D. Mueller-Dombois, 1969. A framework for a classification of world vegetation. UNESCO report SCWS/269, Paris.

  • Eschmeyer, W. N., R. Fricke & R. van der Laan. 2016. Catalog of Fishes. http://www.calacademy.org/scientists/projects/catalog-of-fishes.

  • Estoup, A., C. Largiader, E. Perrot & D. Chourrout, 1996. Rapid one-tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Molecular Marine Biology and Biotechnology 5(4): 295–298.

    CAS  Google Scholar 

  • Fagan, B., 2014. The Attacking Ocean: The Past, Present, and Future of Rising Sea Levels. Bloomsbury Publishing, New York.

    Google Scholar 

  • Farashi, A., M. Kaboli, H. R. Rezaei, M. R. Naghavi, H. Rahimian & B. Coad, 2014. Reassessment of the taxonomic position of Iranocypris typhlops Bruun & Kaiser, 1944 (Actinopterygii, Cyprinidae). ZooKeys 374: 69–77.

    Article  Google Scholar 

  • Geiger, M., F. Herder, M. Monaghan, V. Almada, R. Barbieri, M. Bariche, P. Berrebi, J. Bohlen, M. Casal-Lopez & G. Delmastro, 2014. Spatial heterogeneity in the Mediterranean biodiversity hotspot affects barcoding accuracy of its freshwater fishes. Molecular Ecology Resources 14(6): 1210–1221.

    Article  CAS  PubMed  Google Scholar 

  • Gray, S., B. Robinson & K. Parsons, 2005. Testing alternative explanations of character shifts against ecological character displacement in brook sticklebacks (Culaea inconstans) that coexist with ninespine sticklebacks (Pungitius pungitius). Oecologia 146(1): 25–35.

    Article  CAS  PubMed  Google Scholar 

  • Guindon, S., J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk & O. Gascuel, 2010. New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59(3): 307–321.

    Article  CAS  PubMed  Google Scholar 

  • Hamidan, N. A., M. F. Geiger & J. Freyhof, 2014. Garra jordanica, a new species from the Dead Sea basin with remarks on the relationship of G. ghorensis, G. tibanica and G. rufa (Teleostei: Cyprinidae). Ichthyolology and Exploration of Freshwaters 25: 223–236.

    Google Scholar 

  • Hashemzadeh Segherloo, I., L. Bernatchez, K. Golzarianpour, A. Abdoli, C. Primmer & M. Bakhtiary, 2012. Genetic differentiation between two sympatric morphs of the blind Iran cave barb Iranocypris typhlops. Journal of Fish Biology 81(5): 1747–1753.

    Article  CAS  PubMed  Google Scholar 

  • Hedges, S. B., 2001. Afrotheria: plate tectonics meets genomics. Proceedings of the National Academy of Sciences USA 98(1): 1–2.

    Article  CAS  Google Scholar 

  • Holdridge, L. R., 1967. Life zone ecology, rev ed. Centro Científico Tropical, San José.

    Google Scholar 

  • Huelsenbeck, J. P. & F. Ronquist, 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8): 754–755.

    Article  CAS  PubMed  Google Scholar 

  • Ivanova, N. V., T. S. Zemlak, R. H. Hanner & P. D. Hebert, 2007. Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes 7(4): 544–548.

    Article  CAS  Google Scholar 

  • Karanth, P. K., 2006. Out-of-India Gondwanan origin of some tropical Asian biota. Current Science 90(6): 789–792.

    Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16(2): 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Küçük, F. A., E. S. Bayçelebi, S. S. Güçlü & I. Gülle, 2015. Description of a new species of Hemigrammocapoeta (Teleostei: Cyprinidae) from Lake Isıklı, Turkey. Zootaxa 4052(3): 359–365.

    Article  PubMed  Google Scholar 

  • Lanfear, R., B. Calcott, S. Y. Ho & S. Guindon, 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29(6): 1695–1701.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, L. G., 1988. Land mammals and the great American interchange. American Scientist 76(4): 380–388.

    Google Scholar 

  • Menon, A. G. K., 1964. Monograph of the cyprinid fishes of the genus Garra Hamilton. Memoirs of the Indian Museum 14(4): 173–260.

    Google Scholar 

  • Pfennig, D. W. & K. S. Pfennig, 2010. Character displacement and the origins of diversity. The American Naturalist 176(Suppl 1): S26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfennig, K. S. & D. W. Pfennig, 2009. Character displacement: ecological and reproductive responses to a common evolutionary problem. The Quarterly Review of Biology 84(3): 253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson, B. W. & D. W. Pfennig, 2013. Inducible competitors and adaptive diversification. Current Zoology 59(4): 537–552.

    Article  Google Scholar 

  • Robinson, B. W. & D. S. Wilson, 1994. Character release and displacement in fishes: a neglected literature. American Naturalist 144: 596–627.

    Article  Google Scholar 

  • Rögl, F., 1999. Mediterranean and Paratethys: facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geologica Carpathica 50(4): 339–349.

    Google Scholar 

  • Ronquist, F. & J. P. Huelsenbeck, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  • Sayyadzadeh, G., H. R. Esmaeili & J. Freyhof, 2015. Garra mondica, a new species from the Mond River drainage with remarks on the genus Garra from the Persian Gulf basin in Iran (Teleostei: Cyprinidae). Zootaxa 4048(1): 75–89.

    Article  PubMed  Google Scholar 

  • Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford.

    Google Scholar 

  • Schmidthüsen, J., 1976. Atlas zur Biogeographie. Bibliographisches Institut, Zürich.

    Google Scholar 

  • Schultz, J., 1995. The Ecozones of the World: The Ecological Divisions of the Geosphere. Springer, Berlin.

    Book  Google Scholar 

  • Shermer, M., 2002. In Darwin’s Shadow: The Life and Science of Alfred Russel Wallace: A Biographical Study on the Psychology of History. Oxford University Press, Oxford.

    Google Scholar 

  • Stamatakis, A., 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21): 2688–2690.

    Article  CAS  PubMed  Google Scholar 

  • Stiassny, M. L. & A. Getahun, 2007. An overview of labeonin relationships and the phylogenetic placement of the Afro-Asian genus Garra Hamilton, 1922 (Teleostei: Cyprinidae), with the description of five new species of Garra from Ethiopia, and a key to all African species. Zoological Journal of the Linnean Society 150(1): 41–83.

    Article  Google Scholar 

  • Talwar, P. K., 1991. Inland Fishes of India and Adjacent Countries, Vol. 2. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Tamura, K., S. Glen, P. Daniel, F. Alan & K. Sudhir, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, Q., A. Getahun & H. Liu, 2009. Multiple in-to-Africa dispersals of labeonin fishes (Teleostei: Cyprinidae) revealed by molecular phylogenetic analysis. Hydrobiologia 632(1): 261–271.

    Article  CAS  Google Scholar 

  • Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25(24): 4876–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsigenopoulos, C. S., P. Kasapidis & P. Berrebi, 2010. Phylogenetic relationships of hexaploid large-sized barbs (genus Labeobarbus, Cyprinidae) based on mtDNA data. Molecular Phylogenetics and Evolution 56(2): 851–856.

    Article  PubMed  Google Scholar 

  • Vasilyan, D. & G. Carnevale, 2013. The Afro-Asian labeonine genus Garra Hamilton, 1822 (Teleostei, Cyprinidae) in the Pliocene of Central Armenia: Palaeoecological and palaeobiogeographical implications. Journal of Asian Earth Sciences 62: 788–796.

    Article  Google Scholar 

  • Wallace, A. R., 1876. The Geographical Distribution of Animals, with a Study of the Relations of Living and Extinct Faunas as Elucidating the Past Changes of the Earth’s Surface; with Maps and Illustrations; in Two Volumes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Walter, H. & E. Box, 1976. Global classification of natural terrestrial ecosystems. Vegetatio 32(2): 75–81.

    Article  Google Scholar 

  • Xia, X., 2013. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution 30(7): 1720–1728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, X. & P. Lemey, 2009. Assessing Substitution Saturation with DAMBE. In Salemi, M. & A.-M. Vandamme (eds), The phylogenetic handbook: a practical approach to DNA and protein phylogeny. Cambridge University Press, Cambridge: 615–630.

    Chapter  Google Scholar 

  • Xia, X., Z. Xie, M. Salemi, L. Chen & Y. Wang, 2003. An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26(1): 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L. & R. L. Mayden, 2010. Phylogenetic relationships, subdivision, and biogeography of the cyprinid tribe Labeonini (sensu) (Teleostei: Cypriniformes), with comments on the implications of lips and associated structures in the labeonin classification. Molecular Phylogenetics and Evolution 54(1): 254–265.

    Article  PubMed  Google Scholar 

  • Yang, L., M. Arunachalam, T. Sado, B. A. Levin, A. S. Golubtsov, J. Freyhof, J. P. Friel, W.-J. Chen, M. Vincent Hirt & R. Manickam, 2012. Molecular phylogeny of the cyprinid tribe Labeonini (Teleostei: Cypriniformes). Molecular Phylogenetics and Evolution 65(2): 362–379.

    Article  PubMed  Google Scholar 

  • Zhang, E., 2005. Phylogenetic relationships of labeonine cyprinids of the disc-bearing group (Pisces: Teleostei). Zoological Studies 44(1): 130–143.

    Google Scholar 

  • Zheng, L., Y. Junxing & C. Xiaoyong, 2012. Phylogeny of the Labeoninae (Teleostei, Cypriniformes) based on nuclear DNA sequences and implications on character evolution and biogeography. Current Zoology 58(6): 837–850.

    Article  Google Scholar 

  • Zhou, W., X.-F. Pan & M. Kottelat, 2005. Species of Garra and Discogobio (Teleostei: Cyprinidae) in the Yuanjiang (Upper Red River) drainage of Yunnan Province, China with a description of a new species. Zoological Studies Taipei 44(4): 445.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Guillaume Côté and Janine Schmidt for DNA extraction and sequence library preparation. This study is a product of the FREDIE project, financed in the SAW program by the Leibniz Association (SAW-2011-ZFMK-3; http://www.leibniz-gemeinschaft.de), an NSERC (Canada) Discovery grant (http://www.nserc-crsng.gc.ca) to L.B., grant no. 688M1GRD94 from Shahr-e-Kord University (http://www.sku.ac.ir) to I.H., a grant from Shiraz University (www.shirazu.ac.ir) to H.R.E., a grant from Shahid Beheshti University (http://sbu.ac.ir) to A.A., and a grant from Istanbul University (www2.istanbul.edu.tr) to M.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Hashemzadeh Segherloo.

Additional information

Handling editor: Christian Sturmbauer

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemzadeh Segherloo, I., Abdoli, A., Eagderi, S. et al. Dressing down: convergent reduction of the mental disc in Garra (Teleostei: Cyprinidae) in the Middle East. Hydrobiologia 785, 47–59 (2017). https://doi.org/10.1007/s10750-016-2902-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2902-8

Keywords

Navigation