Hybridisation and cryptic invasion in Najas marina L. (Hydrocharitaceae)?

Abstract

Macrophytes have been used as bioindicators for eutrophication assessment in freshwaters required by the European Water Framework Directive (WFD). The red listed Najas marina s.l. is routinely mapped in Germany. Different indicator values have been assigned to the subspecies marina and intermedia which are, however, frequently hard to tell apart due to morphological similarity. Therefore, phylogenetic structure within N. marina s.l. was investigated using nuclear ribosomal (ITS) and chloroplast (trnL-F) DNA sequence data from over a hundred accessions, representing three of the 12 subspecies and one of four varieties in N. marina. The samples group in two distinct clusters, which could be correlated to the two karyotypes previously reported. The clusters differ in 45 positions of ITS and 10 of trnL-F, respectively, with almost no variation within. Conflicting placement in the nuclear and chloroplast tree supported by cloning of heterozygotic samples identified hybrids in four cases. The clear-cut molecular differentiation in spite of morphological similarity identifies both lineages as distinct but cryptic species (N. marina and N. major). Based on our modified concept and the uncertainty introduced by former misidentification, the use of the two taxa for the purpose of the WFD and regional red list status needs re-evaluation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Acosta, M. C. & A. C. Premoli, 2010. Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae). Molecular Phylogenetics and Evolution 54: 235–242.

    Article  PubMed  Google Scholar 

  2. Álvarez, I. & J. F. Wendel, 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29: 417–434.

    Article  PubMed  Google Scholar 

  3. Andreasen, K. & B. G. Baldwin, 2001. Unequal evolutionary rates between annual and perennial lineages of checker mallows (Sidalcea, Malvaceae): evidence from 18S to 26S rDNA internal and external transcribed spacers. Molecular Biology and Evolution 18: 936–944.

    CAS  Article  PubMed  Google Scholar 

  4. Austerlitz, F., S. Mariette, N. Machon, P.-H. Gouyon & B. Godelle, 2000. Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154: 1309–1321.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Baldwin, B. G., M. J. Sanderson, J. M. Porter, M. F. Wojciechowski, C. S. Campbell & M. J. Donoghue, 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden 82: 247–277.

    Article  Google Scholar 

  6. Barrett, S. C. H., C. G. Eckert & B. C. Husband, 1993. Evolutionary processes in aquatic plant populations. Aquatic Botany 44: 105–145.

    Article  Google Scholar 

  7. Brakenhoff, R. H., J. G. Schoenmakers & N. H. Lubsen, 1991. Chimeric cDNA clones: a novel PCR artifact. Nucleic Acids Research 19: 1949.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Bräuchler, C., 2010. Najas marina. Schuhwerk, F. (ed), Floristische Kurzmitteilungen, Berichte der Bayerischen Botanischen Gesellschaft 80: 181–182.

  9. Bräuchler, C., 2015. Towards a better understanding of the Najas marina complex: notes on the correct application and typification of the names N. intermedia, N. major, and N. marina. Taxon 64: 1028–1030.

    Article  Google Scholar 

  10. Bräuchler, C., H. Meimberg & G. Heubl, 2004. Molecular phylogeny of the genera Digitalis L. and Isoplexis (Lindley) Loudon (Veronicaceae) based on ITS- and trnL-F sequences. Plant Systematics and Evolution 248: 111–128.

    Article  Google Scholar 

  11. Bräuchler, C., H. Meimberg & G. Heubl, 2010. Molecular phylogeny of Menthinae (Lamiaceae, Nepetoideae, Mentheae) – taxonomy, biogeography and conflicts. Molecular Phylogenetics and Evolution 55: 501–523.

    Article  PubMed  Google Scholar 

  12. Buch, C., A. Jagel & K. Van De Weyer, 2012. Najas marina L. subsp. intermedia (WOLFG. ex GORSKI) CASPER (Hydrocharitaceae), in the lower Rhine region: the first record for North Rhine-Westphalia. Veröffentlichungen des Bochumer Botanischen Vereins 4(4): 38–43. http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/27770.

  13. Casper, S. J., 1979. Beiträge zur Taxonomie und Chorologie europäischer Wasser und Sumpfpflanzen 2. Was ist Najas marina L.? Feddes Repertorium 90: 217–238.

    Article  Google Scholar 

  14. Casper, S. J. & H.-D. Krausch, 1980. Pteridophyta und Anthophyta, 1. Teil – Lycopodiaceae bis Orchidaceae. In Ettl, H., J. Gerloff & H. Heynig (eds.), Süßwasserflora von Mitteleuropa 23. Gustav Fischer Verlag, Stuttgart, New York: 139–149.

    Google Scholar 

  15. Cheffings, C.M., L. Farrell, T.D. Dines, R.A. Jones, S.J. Leach, D.R. McKean, D.A. Pearman, C.D. Preston, F.J. Rumsey & I. Taylor, 2005. The Vascular Plant Red Data List for Great Britain. Species Status 7: 1–116. In: Cheffings, C.M. & Farrell, L. (eds). Joint Nature Conservation Committee, Peterborough.

  16. Chen, C. W., Y. M. Huang, L. Y. Kuo, Q. D. Nguyen, H. T. Luu, J. R. Callado, D. R. Farrar & W. L. Chiou, 2013. trnL-F is a powerful marker for DNA identification of field vittarioid gametophytes (Pteridaceae). Annals of Botany 111: 663–673.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Chen, L., J. Chen, R. W. Gituru & Q. Wang, 2012. Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae. BMC Evolutionary Biology 12: 30.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. China Plant BOL Group, D.-Z. Li, L.-M. Gao, H.-T. Li, H. Wang, X.-J. Ge, J.-Q. Liu, Z.-D. Chen, S.-L. Zhou, S.-L. Chen, J.-B. Yang, C.-X. Fu, C.-X. Zeng, H. F. Yan, Y.-J. Zhu, Y.-S. Sun, S.-Y. Chen, L. Zhao, K. Wang, T. Yang & G.-W. Duan, 2011. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences 108: 19641–19646.

    Article  Google Scholar 

  19. European Commission, 2005. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance on the intercalibration process 2004–2006. In: Commission, E. (ed.). Office for Official publications of the European Communities, Guidance Document No. 14, Luxembourg.

  20. Gehrke, B., C. Bräuchler, K. Romoleroux, M. Lundberg, G. Heubl & T. Eriksson, 2008. Molecular phylogenetics of Alchemilla, Aphanes and Lachemilla (Rosaceae) inferred from plastid and nuclear intron and spacer DNA sequences, with comments on generic classification. Molecular Phylogenetics and Evolution 47: 1030–1044.

    CAS  Article  PubMed  Google Scholar 

  21. Geist, J., 2014. Trends and directions in water quality and habitat management in the context of the European water framework directive. Fisheries 39: 219–220.

    Article  Google Scholar 

  22. Geller, J. B., 1999. Decline of a native mussel masked by sibling species invasion. Conservation Biology 13: 661–664.

    Article  Google Scholar 

  23. Geller, J. B., J. A. Darling & J. T. Carlton, 2010. Genetic perspectives on marine biological invasions. Annual Review of Marine Science 2: 367–393.

    Article  PubMed  Google Scholar 

  24. Gemeinholzer, B., C. Oberprieler & K. Bachmann, 2006. Using GenBank data for plant identification: possibilities and limitations using the ITS 1 of Asteraceae species belonging to the tribes Lactuceae and Anthemideae. Taxon 55: 173–187.

    Article  Google Scholar 

  25. Gerlach, J. D., B. S. Bushman, J. K. McKay & H. Meimberg, 2009. Taxonomic confusion permits the unchecked invasion of vernal pools in California by Low Mannagrass (Glyceria declinata). Invasive Plant Science and Management 2: 92–97.

    Article  Google Scholar 

  26. Haeupler, H. & T. Muer, 2007. Bildatlas der Farn- und Blütenpflanzen Deutschlands, 2nd ed. Eugen Ulmer Verlag KG, Stuttgart.

    Google Scholar 

  27. Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series 41: 95–98.

    CAS  Google Scholar 

  28. Hering, J. G., D. L. Sedlak, C. Tortajada, A. K. Biswas, C. Niwagaba & T. Breu, 2015. Local perspectives on water. Science 349: 479–480.

    CAS  Article  PubMed  Google Scholar 

  29. Hoffmann, M. A., A. Benavent González, U. Raeder & A. Melzer, 2013a. Experimental weed control of Najas marina ssp. intermedia and Elodea nuttallii in lakes using biodegradable jute matting. Journal of Limnology 72: e39.

    Article  Google Scholar 

  30. Hoffmann, M. A., M. Sacher, S. Lehner, U. Raeder & A. Melzer, 2013b. Influence of sediment on the growth of the invasive macrophyte Najas marina ssp. intermedia in lakes. Limnologica-Ecology and Management of Inland Waters 43: 265–271.

    CAS  Article  Google Scholar 

  31. Holmgren, P.K. & N.H. Holmgren, 1998. Continuously updated electronic resource. Index herbariorum: A global directory of public herbaria and associated staff New York Botanical Garden’s Virtual Herbarium, New York. http://sweetgum.nybg.org/ih. (26 January 2009).

  32. Hoshi, Y., J. Shirakawa & M. Hasebe, 2006. Nucleotide sequence variation was unexpectedly low in an endangered species, Aldrovanda vesiculosa L. (Droseraceae). Chromosome Botany 1: 27–32.

    Article  Google Scholar 

  33. Huotari, T. & H. Korpelainen, 2013. Comparative analyses of plastid sequences between native and introduced populations of aquatic weeds Elodea canadensis and E. nuttallii. PloS One 8: e58073.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Huson, D., D. Richter, C. Rausch, T. Dezulian, M. Franz & R. Rupp, 2007. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8: 460.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ito, Y., T. Ohi-Toma, J. Murata & N. Tanaka, 2010. Hybridization and polyploidy of an aquatic plant, Ruppia (Ruppiaceae), inferred from plastid and nuclear DNA phylogenies. American Journal of Botany 97: 1156–1167.

    CAS  PubMed  Google Scholar 

  36. Ito, Y., T. Ohi-Toma, J. Murata & N. Tanaka, 2013. Comprehensive phylogenetic analyses of the Ruppia maritima complex focusing on taxa from the Mediterranean. Journal of Plant Research 126: 753–762.

    Article  PubMed  Google Scholar 

  37. Katoh, K. & D. M. Standley, 2013. MAFFT Multiple Sequence Alignment Software Version 7: improvements in Performance and Usability. Molecular Biology and Evolution 30: 772–780.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Kelso, N.V. & T. Patterson, 2010. Introducing natural earth data – Naturalearth.com. Geographia Technica Special Issue: 82–89.

  39. Korneck, D., M. Schnittler & I. Vollmer, 1996. Rote Liste der Farn-und Blutenpflanzen (Pteridophyta und Spermatophyta) Deutschlands. Schriftenreihe fur Vegetationskunde 28: 21–187.

    Google Scholar 

  40. Lambertini, C., T. Riis, B. Olesen, J. S. Clayton, B. K. Sorrell & H. Brix, 2010. Genetic diversity in three invasive clonal aquatic species in New Zealand. BMC Genetics 11: 1–18.

    Article  Google Scholar 

  41. Les, D. H. & C. T. Philbrick, 1993. Studies of hybridization and chromosome number variation in aquatic angiosperms: evolutionary implications. Aquatic Botany 44: 181–228.

    Article  Google Scholar 

  42. Les, D. H., M. L. Moody & C. L. Soros, 2006. A reappraisal of phylogenetic relationships in the monocotyledon family Hydrocharitaceae (Alismatidae). Aliso 22: 211–230.

    Google Scholar 

  43. Les, D. H., S. P. Sheldon & N. P. Tippery, 2010. Hybridization in hydrophiles: natural interspecific hybrids in Najas (Hydrocharitaceae). Systematic Botany 35: 736–744.

    Article  Google Scholar 

  44. Les, D. H., E. L. Peredo, L. K. Benoit, N. P. Tippery, U. M. King & S. P. Sheldon, 2013. Phytogeography of Najas gracillima (Hydrocharitaceae) in North America and its cryptic introduction to California. American Journal of Botany 100: 1905–1915.

    Article  PubMed  Google Scholar 

  45. Les, D.H., E.L. Peredo, U.M. King, L.K. Benoit, N.P. Tippery, C.J. Ball & R.K. Shannon, 2015. Through thick and thin: Cryptic sympatric speciation in the submersed genus Najas (Hydrocharitaceae). Molecular Phylogenetics and Evolution 82(Part A): 15–30.

  46. Lobel, P. B., S. P. Belkhode, S. E. Jackson & H. P. Longerich, 1990. Recent taxonomic discoveries concerning the mussel Mytilus: implications for biomonitoring. Archives of Environmental Contamination and Toxicology 19: 508–512.

    CAS  Article  Google Scholar 

  47. Magnus, P., 1870. Beitrage zur Kenntnis der Gattung Najas L., PhD Thesis. Reimer, Berlin.

  48. McInerney, P., P. Adams & M. Z. Hadi, 2014. Error rate comparison during polymerase chain reaction by DNA polymerase. Molecular Biology International 2014: 8.

    Article  Google Scholar 

  49. Melzer, A., 1999. Aquatic macrophytes as tools for lake management. Hydrobiologia 395–396: 181–190.

    Article  Google Scholar 

  50. Michalski, S. G. & W. Durka, 2015. Separation in flowering time contributes to the maintenance of sympatric cryptic plant lineages. Ecology and Evolution 5: 2172–2184.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mukherjee, A., D. Williams, M. A. Gitzendanner, W. A. Overholt & J. P. Cuda, 2016. Microsatellite and chloroplast DNA diversity of the invasive aquatic weed Hygrophila polysperma in native and invasive ranges. Aquatic Botany 129: 55–61.

    CAS  Article  Google Scholar 

  52. Nguyen, V., M. Detcharoen, P. Tuntiprapas, U. Soe-Htun, J. Sidik, M. Harah, A. Prathep & J. Papenbrock, 2014. Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean. BMC Evolutionary Biology 14: 92.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nylander, J.A.A., 2008. MrModeltest 2.3., Uppsala, Department of Systematic Zoology, Uppsala University, Program distributed by the author.

  54. Penning, W. E., M. Mjelde, B. Dudley, S. Hellsten, J. Hanganu, A. Kolada, M. Berg, S. Poikane, G. Phillips, N. Willby & F. Ecke, 2008. Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquatic Ecology 42: 237–251.

    CAS  Article  Google Scholar 

  55. Peredo, E. L., U. M. King & D. H. Les, 2013. The plastid genome of Najas flexilis: adaptation to submersed environments is accompanied by the complete loss of the NDH complex in an aquatic angiosperm. PloS One 8: e68591.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Pietsch, W., 1981. Zur Bioindikation Najas marina L. s. l. – und Hydrilla verticillata (L. fil.) Royle – reicher Gewässer Mitteleuropas. Feddes Repertorium 92: 125–174.

    Article  Google Scholar 

  57. Posada, D. & K. A. Crandall, 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.

    CAS  Article  PubMed  Google Scholar 

  58. Posada, D. & T. R. Buckley, 2004. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Systematic Biology 53: 793–808.

    Article  PubMed  Google Scholar 

  59. QGIS, D.T., 2014. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org.

  60. Rodríguez, F., J. L. Oliver, A. Marín & J. R. Medina, 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485–501.

    Article  PubMed  Google Scholar 

  61. Ronquist, F. & J. P. Huelsenbeck, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

    CAS  Article  PubMed  Google Scholar 

  62. Sakai, A. K., F. W. Allendorf, J. S. Holt, D. M. Lodge, J. Molofsky, K. A. With, S. Baughman, R. T. J. Cabin, J. E. Cohen, N. C. Ellstrand, D. E. McCauley, P. O’Neil, I. M. Parker, J. N. Thompson & S. G. Weller, 2001. The population biology of invasive species. Annual Review of Ecology and Systematics 32: 305–332.

    Article  Google Scholar 

  63. Saltonstall, K., 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proceedings of the National Academy of Sciences 99: 2445–2449.

    CAS  Article  Google Scholar 

  64. Schaumburg, J., C. Schranz, G. Hofmann, D. Stelzer, S. Schneider & U. Schmedtje, 2004. Macrophytes and phytobenthos as indicators of ecological status in German lakes – a contribution to the implementation of the Water Framework Directive. Limnologica 34: 302–314.

    Article  Google Scholar 

  65. Schaumburg, J., C. Schranz, P. Meilinger, D. Stelzer & A. Vogel, 2011. Bewertung von Seen mit Makrophyten & Phytobenthos gemäß EG-WRRL – Anpassung des Verfahrens aufgrund erster Ergebnisse und Erfahrungen aus den Bundesländern – Endbericht im Auftrag der LAWA (Projekt Nr. O 8.08). Bayerisches Landesamt für Umwelt, München 296. http://www.lfu.bayern.de/wasser/gewaesserqualitaet_seen/phylib_deutsch/publikationen/index.htm.

  66. Schilthuizen, M., C. S. Vairappan, E. M. Slade, D. J. Mann & J. A. Miller, 2015. Specimens as primary data: museums and ‘open science’. Trends in ecology & evolution 30: 237–238.

    Article  Google Scholar 

  67. Schneider, S., C. Schranz & A. Melzer, 2000. Indicating the trophic state of running waters by submersed macrophytes and epilithic diatoms: exemplary implementation of a new classification of taxa into trophic classes. Limnologica - Ecology and Management of Inland Waters 30: 1–8.

    CAS  Article  Google Scholar 

  68. Sculthorpe, C. D., 1967. Biology of Aquatic Vascular Plants. Edward Arnold Ltd., London.

    Google Scholar 

  69. Simpson, D. A., 1988. Phenotypic plasticity of Elodea nuttallii (Planch.) H. St John and Elodea canadensis Michx in the British Isles. Watsonia 17: 121–132.

    Google Scholar 

  70. Soltis, D. E., E. V. Mavrodiev, J. J. Doyle, J. Rauscher & P. S. Soltis, 2008. ITS and ETS sequence data and phylogeny reconstruction in allopolyploids and hybrids. Systematic Botany 33: 7–20.

    Article  Google Scholar 

  71. Stelzer, D., S. Schneider & A. Melzer, 2005. Macrophyte-Based assessment of lakes – a contribution to the implementation of the european water framework directive in Germany. International Review of Hydrobiology 90: 223–237.

    CAS  Article  Google Scholar 

  72. Telford, A., M. T. O’Hare, S. Cavers & N. Holmes, 2011. Can genetic bar-coding be used to identify aquatic Ranunculus L. subgenus Batrachium (DC) A. Gray? A test using some species from the British Isles. Aquatic Botany 95: 65–70.

    Article  Google Scholar 

  73. Tippery, N. P. & D. H. Les, 2013. Hybridization and systematics of dioecious North American Nymphoides (N. aquatica and N. cordata; Menyanthaceae). Aquatic Botany 104: 127–137.

    Article  Google Scholar 

  74. Triest, L., 1988. A revision of the genus Najas L.(Najadaceae) in the Old World. Academie Royale des Sciences d’Outre-Mer, Classe des sciences naturelles et médicales, Mémoires in-8°, Nouv. sér. 22 (1): 172, Brussel.

  75. Triest, L., 1989. Electrophoretic polymorphism and divergence in Najas marina L. (Najadaceae): molecular markers for individuals, hybrids, cytodemes, lower taxa, ecodemes and conservation of genetic diversity. Aquatic Botany 33: 301–380.

    Article  Google Scholar 

  76. Triest, L., 1991. ADH polymorphism in Najas marina (Najadaceae): the situation in an obligate outcrosser. Opera Botanica Belgica 4: 167–192.

    Google Scholar 

  77. Triest, L. & T. Sierens, 2010. Chloroplast sequences reveal a diversity gradient in the Mediterranean Ruppia cirrhosa species complex. Aquatic Botany 93: 68–74.

    CAS  Article  Google Scholar 

  78. Triest, L., J. Van Geyt & V. Ranson, 1986. Isozyme polymorphism in several populations of Najas marina L. Aquatic Botany 24: 373–384.

    CAS  Article  Google Scholar 

  79. van de Weyer, K., C. Schmidt, B. Kreimeier & D. Wassong, 2011. Bestimmungsschlüssel für die aquatischen Makrphyten (Gefäßpflanzen, Armleuchteralgen und Moose) in Deutschland. Landesamt für Umwelt, Gesundheit und Verbraucherschutz, Potsdam.

  80. Vargas, P., B. G. Baldwin & L. Constance, 1998. Nuclear ribosomal DNA evidence for a western North American origin of Hawaiian and South American species of Sanicula (Apiaceae). Proceedings of the National Academy of Sciences of the United States of America 95: 235–240.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Viinikka, Y., 1976. Najas marina L. (Najadaceae). Karyotypes, cultivation and morphological variation. Annales Botanici Fennici 13: 119–131.

    Google Scholar 

  82. Viinikka, Y., M. Agami & L. Triest, 1987. A tetraploid cytotype of Najas marina L. Hereditas 106: 289–291.

    Article  Google Scholar 

  83. Wallin, M., T. Wiederholm & R.K. Johnson, 2002. Guidance on establishing reference conditions and ecological status class boundaries for inland surface waters. CIS Working Group 2.3 – REFCOND. 5th and final draft, final version 7.0, 2003-03-05:93.

  84. Waycott, M., D. W. Freshwater, R. A. York, A. Calladine & W. J. Kenworthy, 2002. Evolutionary trends in the seagrass genus Halophila (Thouars): insights from molecular phylogeny. Bulletin of Marine Science 71: 1299–1308.

    Google Scholar 

  85. White, T. J., T. Bruns, S. Lee & J. W. Taylor, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., D. H. Gelfand, J. J. Sninsky & T. J. White (eds.), PCR Protocols, A Guide to Methods and Applications. Academic Press, New York.

    Google Scholar 

  86. Wiegleb, G., 1978. Der soziologische Konnex der 47 häufigsten Makrophyten der Gewässer Mitteleuropas. Vegetatio 38: 165–174.

    Article  Google Scholar 

  87. Winge, Ö., 1927. Chromosome behaviour in male and female individuals of Vallisneria spiralis and Najas marina. Journal of Genetics 18(1): 99–107.

    Article  Google Scholar 

  88. Yuan, Y.-W. & R. G. Olmstead, 2008. A species-level phylogenetic study of the Verbena complex (Verbenaceae) indicates two independent intergeneric chloroplast transfers. Molecular Phylogenetics and Evolution 48: 23–33.

    CAS  Article  PubMed  Google Scholar 

  89. Yue, J.-X., J. Li, D. Wang, H. Araki, D. Tian & S. Yang, 2010. Genome-wide investigation reveals high evolutionary rates in annual model plants. BMC Plant Biology 10: 242.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The funding of this project was provided by Bavarian State Ministry of the Environment and Consumer Protection (Grant Number TLK01U-60031). The authors thank the following people for contributing to this study: Prof. Dr. Ludwig Triest for scholarly exchange and providing herbarium material, Tanja Ernst for excellent technical assistance, all scientific divers (in first place Maximiliane Schümann and Kristin Wutz), assisting students and colleagues of the Limnological Research Station Iffeldorf, TU Munich, for various contributions, the curators and directors of the herbaria providing samples of dried specimens and locality data, and Dr. Markus Heinrichs and Dr. Tanja Beige for very helpful comments on the manuscript. Finally, the authors appreciate the feedback provided by Prof. Dr. Tanja Gschlößl and the valuable suggestions of our reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephanie Rüegg.

Additional information

Handling editor: Katya E. Kovalenko

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 31 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rüegg, S., Raeder, U., Melzer, A. et al. Hybridisation and cryptic invasion in Najas marina L. (Hydrocharitaceae)?. Hydrobiologia 784, 381–395 (2017). https://doi.org/10.1007/s10750-016-2899-z

Download citation

Keywords

  • Cryptic divergence
  • Najas intermedia
  • Najas major
  • Red list
  • ITS
  • trnL-F